How to Simulate Transportation Disturbances in the Logistic Process?

  • Patrycja Hoffa-DabrowskaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 616)


The paper presents a description of modelling the supply chain including disturbances by using simulation software. In order to make the best representation of reality, the route, the lorry’s speed and various types of disturbances are taken into account. The purpose of this article is to demonstrate how disturbances can be modeled and to present benefits of using the simulation programs to plan a route and time of transport.


Disturbances Creation of special objects in simulation Supply chain 



Presented research works are carried out under the project - 503215/11/140/DSPB/4134 Poznan University of Technology.


  1. 1.
    Alteren, B., Hokstad, P., Moe, D., Sakshaug, K.: A barrier model for road traffic applied to accident analysis. In: Spitzer, C., et al. (eds.) Probabilistic Safety Assessment and Management, pp. 3603–3608. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Bae, J.W., Lee, G., Moon, I.: Introductory tutorial: agent-based modeling and simulation. In: Winter Simulation Conference, pp. 3809–3820 (2012)Google Scholar
  3. 3.
    Banks, J., Carson II, J.S., Nelson, B.L., Nicol, D.M.: Discrete-Event System Simulation, 4th edn., pp. 68–86. Prentice Hall, Upper Saddle River (2004). ISBN: 0-13-144679-7Google Scholar
  4. 4.
    Baykasoglu, A., Kaplanoglu, V.: A multi-agent approach to load consolidation in transportation. Adv. Eng. Softw. 42, 477–490 (2011)CrossRefGoogle Scholar
  5. 5.
    Bocewicz, G., Nielsen, P., Banaszak, Z., Dang, Q.V.: Multimodal processes cyclic states scheduling. In: Corchado, J.M., et al. (eds.) PAAMS 2013 Workshops. CCIS, vol. 365, pp. 73–85. Springer, Heidelberg (2013)Google Scholar
  6. 6.
    Brussaard, L.A., Kruiskamp, M.M., Oude Essink, M.P.: The Dutch model for the quantitative risk analysis of road tunnels. In: Spitzer, C., et al. (eds.) Probabilistic Safety Assessment and Management, pp. 2660–2665. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Chan, W.K.V., Son, Y., Macal, C.M.: Agent-based simulation tutorial – simulation of emergent behavior and differences between agent-based simulation and discrete-event simulation. In: Winter Simulation Conference, pp. 135–150 (2010)Google Scholar
  8. 8.
    Chen, S., Peng, H., Liu, S., Yang, Y.: A multimodal hierarchical-based assignment model for integrated transportation networks. J. Transp. Syst. Eng. Inf. Technol. 9(6), 130–135 (2009)Google Scholar
  9. 9.
    Fertsch, M.: Słownik Terminologii Logistycznej, p. 95. Instytut Logistyki i Magazynowania, Poznań (2006)Google Scholar
  10. 10.
    Gheorghe, A., Birchmeier, J., Kröger, W.: Advanced spatial modelling for risk analysis of transportation dangerous goods. In: Spitzer, C., et al. (eds.) Probabilistic Safety Assessment and Management, pp. 2499–2504. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Hoffa, P., Pawlewski, P.: Agent based approach for modeling disturbances in supply chain. In: Corchado, J.M., et al. (eds.) PAAMS 2014. CCIS, vol. 430, pp. 144–155. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  12. 12.
    Hoffa, P., Pawlewski, P.: Models of organizing transport tasks including possible disturbances and impact of them on the sustainability of the supply chain. In: Pawlewski, P., Greenwood, A. (eds.) Process Simulation and Optimization in Sustainable Logistics and Manufacturing. Eco Production, pp. 141–151. Springer, Heidelberg (2014). Environmental Issues in Logistics and ManufacturingGoogle Scholar
  13. 13.
    Kim, S.-H., Robertazzi, T.G.: Modeling mobile agent behavior. Comput. Math. Appl. 51, 951–966 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Krejci, C.C., Beamon, B.M.: Modeling food supply using multi-agent simulation. In: Winter Simulation Conference, pp. 1167–1178 (2012)Google Scholar
  15. 15.
    Orlandelli, C.M., Vestrucci, P.: Development of a road transportation risks data base for Italy: methodology, models and results. In: Spitzer, C., et al. (eds.) Probabilistic Safety Assessment and Management, pp. 2269–2274. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Pawlewski, P.: DES/ABS approach to simulate warehouse operations. In: Bajo, J., Hallenborg, K., Pawlewski, P., Botti, V., Sánchez-Pi, N., Duque Méndez, N.D., Lopes, F., Vicente, J. (eds.) PAAMS 2015 Workshops. CCIS, vol. 524, pp. 115–125. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  17. 17.
    Sitek, P., Wikarek, J.: A hybrid approach to supply chain modeling and optimization. In: Federated Conference on Computer Science and Information Systems, pp. 1223–1230 (2013)Google Scholar
  18. 18.
    Skorupski, J.: Sieci petriego jako narzędzie do modelowania procesów ruchowych w transporcie. Prace Naukowe Politechniki Warszawskiej, Transport, z.78, pp. 69–84 (2011)Google Scholar
  19. 19.
    Tixier, J., et al.: Development of a risk knowledge platform dedicated to accident of dangerous goods transportation. In: Guedes Soares, G., Zio, E. (eds.) Safety and Reliability for Managing Risk, pp. 117–122. Taylor & Francis Group, London (2006)Google Scholar
  20. 20.
    Umeda, S.: Simulation analysis of supply chain systems with reverse logistics. In: Winter Simulation Conference, pp. 3375–3384 (2013)Google Scholar
  21. 21.
    Wieland, A., Wallenburg, C.M.: Supply-Chain-Management in Stürmischen Zeiten. Universitätsverlag der TU, Berlin (2011)Google Scholar
  22. 22.
    Wilhelm, T., Hollunder, J.: Information theoretic description of networks. Phys. A 385(1), 385–396 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
  24. 24. Accessed Jan 2015
  25. 25. Accessed Jan 2015
  26. 26.
  27. 27. Accessed Mar 2015
  28. 28.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Poznan University of TechnologyPoznańPoland

Personalised recommendations