Advertisement

A Multi-agent Framework for Cost Estimation of Product Design

  • Marcin RelichEmail author
  • Pawel Pawlewski
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 616)

Abstract

This paper presents the use of a multi-agent framework for evaluating parameters of new products and estimating cost of product design. Companies often develop many new product projects simultaneously. A limited budget of research and development imposes selection of the most promising projects. The evaluation of new product projects requires cost estimation and involves many agents that analyse the customer requirements and information acquired from an enterprise system, including the fields of sales and marketing, research and development, and manufacturing. The model of estimating product design cost is formulated in terms of a constraint satisfaction problem. The illustrative example presents the use of a fuzzy neural network to identify the relationships and estimate cost of product design.

Keywords

Multi-agent system Fuzzy neural network Constraint programming New product development Decision support system 

Notes

Acknowledgements

Presented research works are partially carried out under the project – status activities of Faculty of Engineering Management DS 2016 Poznan University of Technology.

References

  1. 1.
    Cooper, R., Edgett, S.: Maximizing productivity in product innovation. Res. Technol. Manag. 51(2), 47–58 (2008)Google Scholar
  2. 2.
    Spalek, S.: Improving industrial engineering performance through a successful project management office. Eng. Econ. 24(2), 88–98 (2013)CrossRefGoogle Scholar
  3. 3.
    Relich, M., Bzdyra, K.: Knowledge discovery in enterprise databases for forecasting new product success. In: Jackowski, K., et al. (eds.) IDEAL 2015. LNCS, vol. 9375, pp. 121–129. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24834-9_15 CrossRefGoogle Scholar
  4. 4.
    Ulrich, K.T., Eppinger, S.D.: Product Design and Development. McGraw-Hill, Boston (2011)Google Scholar
  5. 5.
    Anderson, D.M.: Design for Manufacturability: Optimizing Cost, Quality and Time-to-Market. CIM Press, Cambria (2001)Google Scholar
  6. 6.
    Yan, Y., Kuphal, T., Bode, J.: Application of multiagent systems in project management. Int. J. Prod. Econ. 68, 185–197 (2000)CrossRefGoogle Scholar
  7. 7.
    Bocewicz, G., Nielsen, I., Banaszak, Z.: Iterative multimodal processes scheduling. Annu. Rev. Control 38(1), 113–122 (2014)CrossRefGoogle Scholar
  8. 8.
    Relich, M., Swic, A., Gola, A.: A knowledge-based approach to product concept screening. In: Omatu, S., et al. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 373, pp. 341–348. Springer, Heidelberg (2016)Google Scholar
  9. 9.
    Madhusudan, T.: An agent-based approach for coordinating product design workflows. Comput. Ind. 56, 235–259 (2005)CrossRefGoogle Scholar
  10. 10.
    Fazel Zarandi, M.H., Ahmadpour, P.: Fuzzy agent-based expert system for steel making process. Expert Syst. Appl. 36, 9539–9547 (2009)CrossRefGoogle Scholar
  11. 11.
    Kishore, R., Zhang, H., Ramesh, R.: Enterprise integration using the agent paradigm: foundations of multi-agent-based integrative business information systems. Decis. Support Syst. 42(1), 48–78 (2006)CrossRefGoogle Scholar
  12. 12.
    Tweedale, J., Ichalkaranje, N., Sioutis, C., Jarvis, B., Consoli, A., Phillips-Wren, G.: Innovations in multi-agent systems. J. Netw. Comput. Appl. 30, 1089–1115 (2007)CrossRefGoogle Scholar
  13. 13.
    Liu, J., Chen, Z., Zhang, X., Liu, Z.: Neural-networks-based distributed output regulation of multi-agent systems with nonlinear dynamics. Neurocomputing 125, 81–87 (2014)CrossRefGoogle Scholar
  14. 14.
    Lopez-Ortega, O., Villar-Medina, I.: A multi-agent system to construct production orders by employing an expert system and a neural network. Expert Syst. Appl. 36, 2937–2946 (2009)CrossRefGoogle Scholar
  15. 15.
    Quteishat, A., Lim, C., Tweedale, J., Jain, L.: A neural network-based multi-agent classifier system. Neurocomputing 72, 1639–1647 (2009)CrossRefGoogle Scholar
  16. 16.
    Borrajo, L., Corchado, J., Corchado, E., Pellicer, M., Bajo, J.: Multi-agent neural business control system. Inf. Sci. 180, 911–927 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lopez-Franco, M., Sanchez, E., Alanis, A., Lopez-Franco, C., Arana-Daniel, N.: Decentralized control for stabilization of nonlinear multi-agent systems using neural inverse optimal control. Neurocomputing 168, 81–91 (2015)CrossRefGoogle Scholar
  18. 18.
    Olajubu, E., Ajayi, O., Aderounmu, G.: A fuzzy logic based multi-agents controller. Expert Syst. Appl. 38, 4860–4865 (2011)CrossRefGoogle Scholar
  19. 19.
    Hanafizadeh, P., Sherkat, M.: Designing fuzzy-genetic learner model based on multi-agent systems in supply chain management. Expert Syst. Appl. 36, 10120–10134 (2009)CrossRefGoogle Scholar
  20. 20.
    Huang, C., Liang, W., Lai, Y., Lin, Y.: The agent-based negotiation process for B2C e-commerce. Expert Syst. Appl. 37, 348–359 (2010)CrossRefGoogle Scholar
  21. 21.
    Doskocil, R., Doubravsky, K.: Decision-making rules based on rough set theory: creditworthiness case study. In: Proceedings of the 24th International Business Information Management Association Conference, pp. 321–327, Milan (2014)Google Scholar
  22. 22.
    Jolly, K., Kumar, R., Vijayakumar, R.: Intelligent task planning and action selection of a mobile robot in a multi-agent system through a fuzzy neural network approach. Eng. Appl. Artif. Intell. 23, 923–933 (2010)CrossRefGoogle Scholar
  23. 23.
    Vatankhah, R., Etemadi, S., Alasty, A., Vossoughi, G.: Adaptive critic-based neuro-fuzzy controller in multi-agents: distributed behavioural control and path tracking. Neurocomputing 88, 24–35 (2012)CrossRefGoogle Scholar
  24. 24.
    Liu, H., Tang, M.: Evolutionary design in a multi-agent design environment. Appl. Soft Comput. 6, 207–220 (2006)CrossRefGoogle Scholar
  25. 25.
    Monticolo, D., Miaita, S., Darwich, H., Hilaire, V.: An agent-based system to build project memories during engineering projects. Knowl.-Based Syst. 68, 88–102 (2014)CrossRefGoogle Scholar
  26. 26.
    Zha, X.F.: A knowledge intensive multi-agent framework for cooperative/collaborative design modelling and decision support for assemblies. Knowl. Based Syst. 15, 493–506 (2002)CrossRefGoogle Scholar
  27. 27.
    Chu, C., Wu, P., Hsu, Y.: Multi-agent collaborative 3D design with geometric model at different levels of detail. Robot. Comput.-Integr. Manuf. 25, 334–347 (2009)CrossRefGoogle Scholar
  28. 28.
    Relich, M., Pawlewski, P.: A multi-agent system for selecting portfolio of new product development projects. In: Bajo, J., Hallenborg, K., Pawlewski, P., Botti, V., Sánchez-Pi, N., Duque Méndez, N.D., Lopes, F., Vicente, J. (eds.) PAAMS 2015 Workshops. CCIS, vol. 524, pp. 102–114. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  29. 29.
    Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier Science, Philadelphia (2006)zbMATHGoogle Scholar
  30. 30.
    Relich, M.: A knowledge-based system for new product portfolio selection. In: Rozewski, P., et al. (eds.) New Frontiers in Information and Production Systems Modelling and Analysis. ISRL, vol. 98, pp. 169–187. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  31. 31.
    Sitek, P., Wikarek, J.: A hybrid approach to the optimization of multiechelon systems. Mathematical Problems in Engineering 2015, Article ID 925675 (2015). doi: 10.1155/2015/925675
  32. 32.
    Van Roy, P., Haridi, S.: Concepts, Techniques and Models of Computer Programming. Massachusetts Institute of Technology, Cambridge (2004)Google Scholar
  33. 33.
    Sitek, P.: A hybrid CP/MP approach to supply chain modelling, optimization and analysis. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1345–1352 (2014)Google Scholar
  34. 34.
    Grzybowska, K.: Selected activity coordination mechanisms in complex systems. In: Bajo, J., Hallenborg, K., Pawlewski, P., Botti, V., Sánchez-Pi, N., Duque Méndez, N.D., Lopes, F., Vicente, J. (eds.) PAAMS 2015 Workshops. CCIS, vol. 524, pp. 69–79. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  35. 35.
    Grzybowska, K.: Application of an electronic bulletin board, as a mechanism of coordination of actions in complex systems – reference model. LogForum 11(2), 151–158 (2015)CrossRefGoogle Scholar
  36. 36.
    Bocewicz, G., Nielsen, I., Banaszak, Z.: Automated guided vehicles fleet match-up scheduling with production flow constraints. Eng. Appl. Artif. Intell. 30, 49–62 (2014)CrossRefGoogle Scholar
  37. 37.
    Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems. Kluwer Academic Publishers, Norwell (2001)CrossRefzbMATHGoogle Scholar
  38. 38.
    Liu, J., Jing, H., Tang, Y.Y.: Multi-agent oriented constraint satisfaction. Artif. Intell. 136, 101–144 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Economics and ManagementUniversity of Zielona GoraZielona GoraPoland
  2. 2.Faculty of Engineering ManagementPoznan University of TechnologyPoznanPoland

Personalised recommendations