Advertisement

A Multi-level and Multi-agent Approach to Modeling and Solving Supply Chain Problems

  • Jarosław Wikarek
  • Paweł SitekEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 616)

Abstract

Supply chain problems cover several aspects at different levels and areas. There are decision on production allocation, resource allocation, production and inventory quantities, distributor selection, choice of transportation mode etc. There are many constraints in the supply chain problems. They concern the following areas (production, distribution, transport, etc.) and types (linear, non-linear, integer, logical, etc.). Therefore it is important effective modeling and solving constraints.

We consider a multi-level and multi-agent approach to modeling and solving supply chain problems using constraint and mathematical programming environments. Its efficiency results from the multi-level presolving and multi-agent architecture. An illustrative example presents effectiveness of the proposed approach. The presented approach will be compared with classical mathematical programming on the same data sets.

Keywords

Constraint logic programming Mathematical programming Multi-agent Supply chain Optimization 

References

  1. 1.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998). ISBN 0-471-98232-6zbMATHGoogle Scholar
  2. 2.
    Barbati, M., Bruno, G., Genovese, A.: Applications of agent-based models for optimization problems in a literature review. Expert Syst. Appl. 39, 6020–6028 (2012)CrossRefGoogle Scholar
  3. 3.
    Tsang, E.: Foundation of Constraint Satisfaction. Academic Press, London and San Diego (1993)Google Scholar
  4. 4.
    Benhamou, F., Jussien, N., O’Sullivan, B.A.: Trends in Constraint Programming. Wiley, New York (2007). ISBN 978-1-905209-97-Wiley-ISTECrossRefzbMATHGoogle Scholar
  5. 5.
    Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Foundations of Artificial Intelligence. Elsevier Science Inc., New York (2006)zbMATHGoogle Scholar
  6. 6.
    Apt, K., Wallace, M.: Constraint Logic Programming Using Eclipse. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  7. 7.
    Bocewicz, G., Banaszak, Z.: Declarative approach to cyclic steady states space refinement: periodic processes scheduling. Int. J. Adv. Manuf. Technol. 67(1–4), 137–155 (2013)CrossRefGoogle Scholar
  8. 8.
    Bzdyra, K., Banaszak, Z., Bocewicz, G.: Multiple project portfolio scheduling subject to mass customized service. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Progress in Automation, Robotics and Measuring Techniques. AISC, vol. 350, pp. 11–22. Springer, Heidelberg (2015)Google Scholar
  9. 9.
    Bockmayr, A., Kasper, T.: Branch-and-Infer: a framework for combining CP and IP. In: Milano, M. (ed.) Constraint and Integer Programming. Operations Research/Computer Science Interfaces Series, pp. 59–87. Springer US, New York (2004). doi: 10.1007/978-1-4419-8917-8_3 CrossRefGoogle Scholar
  10. 10.
    Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: a new approach to integrate CP and MIP. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 6–20. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM 44(2), 201–236 (1997). doi: 10.1145/256303.256306 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hooker, J.N.: Logic optimization, and constraint programming. J. Comput. 14(4), 295–321 (2002)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Milano, M., Wallace, M.: Integrating operation research in constraint programming. Ann. Oper. Res. 175(1), 37–76 (2010). doi: 10.1007/s10479-009-0654-9 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jain, V., Grossmann, I.E.: Algorithms for hybrid MILP/CP models for a class of optimization problems. INFORMS J. Comput. 13(4), 258–276 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sitek P., Wikarek J.: A hybrid method for modeling and solving constrained search problems. In: Proceedings of 2013 Federated Conference on Computer Science and Information Systems, FedCSIS, pp. 385–392 (2013)Google Scholar
  16. 16.
    Sitek, P., Wikarek, J.: A hybrid framework for the modelling and optimisation of decision problems in sustainable supply chain management. Int. J. Prod. Res. 53(21), 6611–6628 (2015). doi: 10.1080/00207543.2015.1005762 CrossRefGoogle Scholar
  17. 17.
    Sitek, P., Wikarek, J., Grzybowska, K.: A multi-agent approach to the multi-echelon capacitated vehicle routing problem. In: Corchado, J.M., Bajo, J., Kozlak, J., Pawlewski, P., Molina, J.M., Gaudou, B., Julian, V., Unland, R., Lopes, F., Hallenborg, K., Teodoro, P.G. (eds.) PAAMS 2014. CCIS, vol. 430, pp. 121–132. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Sitek P.: A hybrid CP/MP approach to supply chain modelling, optimization and analysis. In: Federated Conference on Computer Science and Information Systems, pp. 1385–1392 (2014)Google Scholar
  19. 19.
    Eclipse: Eclipse - The Eclipse Foundation open source community website (2015). www.eclipse.org. Accessed 4 May 2015
  20. 20.
    Lindo Systems INC: LINDO™ Software for Integer Programming, Linear Programming, Nonlinear Programming, Stochastic Programming, Global Optimization (2015). www.lindo.com. Accessed 4 May 2015
  21. 21.
    Relich, M.: Identifying relationships between eco-innovation and product success. In: Golinska, P., Kawa, A. (eds.) Technology Management for Sustainable Production and Logistics, pp. 173–192. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  22. 22.
    Sudo, Y., Kurihara, M., Mitamura, T.: Extending fuzzy constraint satisfaction problems. J. Adv. Comput. Intell. Intell. Inf. 10(4), 465–471 (2006)Google Scholar
  23. 23.
    Grzybowska, K.: Selected activity coordination mechanisms in complex systems. In: Bajo, J., Hallenborg, K., Pawlewski, P., Botti, V., Sánchez-Pi, N., Duque Méndez, N.D., Lopes, F., Vicente, J. (eds.) PAAMS 2015 Workshops. CCIS, vol. 524, pp. 69–79. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-19033-4_6 CrossRefGoogle Scholar
  24. 24.
    Deniziak, R., Bąk, S., Czarnecki, R.: Synthesis of real-time cloud applications for internet of things. Turk. J. Electr. Eng. Comput. Sci. 7719, 35–49 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Information SystemsKielce University of TechnologyKielcePoland

Personalised recommendations