Improving the Distribution of Services in MAS

  • Jesús A. Román
  • Sara RodríguezEmail author
  • Fernando de la Prieta
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 616)


One way to reduce the computational load of the agents is the distribution of their services. To achieve this goal, the functionality of a MAS (multiagent system) should not reside in the agents themselves, but ubiquitously be distributed so that allows the system to perform tasks in parallel avoiding an additional computational cost. The distribution of services that offers SCODA (Distributed and Specialized Agent Communities) allows an intelligent management of these services provided by agents of the system and the parallel execution of threads that allow to respond to requests asynchronously, which implies an improvement in the performance of the system at both the computational level as the level of quality of service in the control of these services. The comparison carried out in the case of study that is presented in this paper demonstrates the existing improvement in the distribution of services on systems based on SCODA.


Multi-agent systems Distributed services Specialized communities SOA 



This work has been carried out by the project EKRUCAmI: Europe-Korea Research on Ubiquitous Computing and Ambient Intelligence. Ref. 318878. FP7-PEOPLE-2012-IRSES.


  1. 1.
    Atiya, A., El-Shoura, S., Shaheen, S., El-Sherif, M.: A comparison between neural network forecasting techniques-case study: river flow forecasting. IEEE Trans. Neural Netw. 2(10), 402–409 (1999)CrossRefGoogle Scholar
  2. 2.
    Balaji, P., Bhagvat, S., Jin, H.-W., Panda, D.K.: Asynchronous zero-copy communication for synchronous sockets in the sockets direct protocol (SDP) over InfiniBand. In: International Parallel and Distributed Processing Symposium (IPDPS 2006) (2006)Google Scholar
  3. 3.
    Belousov, A., Verzakov, S., Von Frese, J.: A flexible classification approach with optimal generalisation performance: support vector machines. Chemometr. Intell. Lab. Syst. 64, 15–25 (2002)CrossRefGoogle Scholar
  4. 4.
    Burges, C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)CrossRefGoogle Scholar
  5. 5.
    Camarinha-Matos, L.M., Afsarmanesh, H.: A comprehensive modeling framework for collaborative networked organizations. J. Intell. Manuf. 5(18), 529–542 (2007)CrossRefGoogle Scholar
  6. 6.
    Cerami, E.: Web Services Essentials Distributed Applications with XML-RPC, SOAP, UDDI & WSDL, 1st edn. O’Reilly & Associates Inc., Sebastopol (2002)Google Scholar
  7. 7.
    Corchado, J., Aiken, J.: Hybrid artificial intelligence methods in oceanographic forecasting models. IEEE SMC Trans. Part C 32, 307–313 (2002)Google Scholar
  8. 8.
    Corchado, J., Lees, B.: A hybrid case-based model for forecasting. Appl. Artif. Intell. Int. J. 15, 105–127 (2001)CrossRefGoogle Scholar
  9. 9.
    Douglas, C., Pai, V.: Seekable sockets: a mechanism to reduce copy overheads in TCP-based messaging. In: International Parallel and Distributed Processing Symposium (IPDPS 2006) (2006)Google Scholar
  10. 10.
    FIPA. Foundation for Intelligent Physical Agents. (2005). Accessed 14 Aug 2006
  11. 11.
    Leymann, F., Roller, D., Schmidt, M.-T.: Web services and business process management. IBM Syst. J. 2(41), 198–211 (2002)CrossRefGoogle Scholar
  12. 12.
    López, F., Luck, M., d’Inverno, M.: A normative framework for agent-based systems. Comput. Math. Organ. Theory 12, 227–250 (2006)CrossRefGoogle Scholar
  13. 13.
    Martín-Merino, M., Román, J.: A new SOM algorithm for electricity load forecasting. In: King, I., Wang, J., Chan, L.-W., Wang, D.L. (eds.) ICONIP 2006. LNCS, vol. 4232, pp. 995–1003. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Martín-Merino, M., Román, J.: Electricity load forecasting using self organizing maps. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 709–716. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: state of the art and research challenges. Computer 11(40), 38–45 (2007)CrossRefGoogle Scholar
  16. 16.
    Papazoglou, M., Georgakapoulos, G.: Introduction to the special issue about service-oriented computing. Commun. ACM 46(10), 24–29 (2003)CrossRefGoogle Scholar
  17. 17.
    Papazoglou, M., van den Heuvel, W.: Service-oriented design and development methodology. Int. J. Web Eng. Technol. 2(4), 412–442 (2006)CrossRefGoogle Scholar
  18. 18.
    Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a BDI-infrastructure for JADE agents. In: EXP - In Search of Innovation (Special Issue on JADE), pp. 76–85 (2003)Google Scholar
  19. 19.
    Pokahr, A., Braubach, L., Walczak, A., Lamersdorf, W.: Jadex - engineering goal-oriented agents. In: Developing Multi-agent Systems with JADE, pp. 254–258. Wiley, Hoboken (2007)Google Scholar
  20. 20.
    RFC 2616. Hypertext Transfer Protocol – HTTP/1.1. The Internet Society (1999)Google Scholar
  21. 21.
    Ricci, A., Buda, C., Zaghini, N.: An agent-oriented programming model for SOA & web services. In: 5th IEEE International Conference on Industrial Informatics (INDIN 2007), pp. 1059–1064, Viena (2007)Google Scholar
  22. 22.
    Román, J., Rodríguez, S., Corchado, J.: Distributed and specialized agent communities. In: Pérez, J.B., et al. (eds.) Trends in Practical Applications of Agents and Multiagent Systems. AISC, vol. 221, pp. 33–40. Springer, Berlin (2013)CrossRefGoogle Scholar
  23. 23.
    Román, J., Tapia, D., Corchado, J.: SCODA para el Desarrollo de Sistemas Multiagente. Revista Ibérica de Sistemas y Tecnologías de Información 8, 25–38 (2011)Google Scholar
  24. 24.
    Rosen, M., Lublinsky, B., Smith, K., Balcer, M.: Applied SOA: Service-Oriented Architecture and Design Strategies. Wiley, Hoboken (2008)Google Scholar
  25. 25.
    Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)zbMATHGoogle Scholar
  26. 26.
    Shen, W., Norrie, D.H.: An agent-based approach for distributed manufacturing and supply chain management. In: Globalization of Manufacturing in the Digital Communications Era of the 21st Century, pp. 579–590 (1998)Google Scholar
  27. 27.
    Sunwook, K., Chanho, P., Seongwoon, K., Yongwha, C.: The offloading of socket information for TCP/IP offload engine. In: 11th International Conference on Advanced Communication Technology (ICACT 2009), vol. 1, pp. 826–831 (2009)Google Scholar
  28. 28.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  29. 29.
    Vapnik, V., Golowich, S., Smola, A.: Support vector method for function approximation, regression estimation, and signal processing. Adv. Neural Inf. Process. Syst. 9, 281–287 (1996)Google Scholar
  30. 30.
    Velásquez, J., Olaya, Y., Franco, C.: Predicción de Series Temporales usando Máquinas de Vectores Soporte. Ingeniare. Revista chilena de ingeniería 18, 64–75 (2010)CrossRefGoogle Scholar
  31. 31.
    Voos, H.: Agent-based distributed resource allocation in technical dynamic systems. In: Proceedings of the IEEE Workshop on Distributed intelligent Systems: Collective intelligence and Its Applications, pp. 157–162. IEEE Computer Society (2006)Google Scholar
  32. 32.
    Zimmermann, O., Schlimm, N., Waller, G., Pestel, M.: Analysis and design techniques for service-oriented development and integration. In: INFORMATIK, pp. 606–611 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jesús A. Román
    • 1
  • Sara Rodríguez
    • 2
    Email author
  • Fernando de la Prieta
    • 2
  1. 1.Department of Computer Science and Automatic, EPS of ZamoraUniversity of SalamancaZamoraSpain
  2. 2.Department of Computer Science and AutomaticUniversity of SalamancaSalamancaSpain

Personalised recommendations