Skip to main content

Decentralized Coalition Formation in Agent-Based Smart Grid Applications

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 616))

Abstract

A steadily growing pervasion of the energy grid with communication technology is widely seen as an enabler for new computational coordination techniques for renewable, distributed generation as well as for controllable consumers. One important task is the ability to group together in order to jointly gain enough suitable flexibility and capacity to assume responsibility for a specific control task in the grid. We present a fully decentralized coalition formation approach based on an established heuristic for predictive scheduling with the additional advantage of keeping all information about local decision base and local operational constraints private. The approach is evaluated in several simulation scenarios with different type of established models for integrating distributed energy resources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.epexspot.com.

References

  1. Abarrategui, O., Marti, J., Gonzalez, A.: Constructing the active european power grid. In: Proceedings of WCPEE 2009, Cairo (2009)

    Google Scholar 

  2. Awerbuch, S., Preston, A.M. (eds.): The Virtual Utility: Accounting, Technology & Competitive Aspects of the Emerging Industry. Topics in Regulatory Economics and Policy, vol. 26. Kluwer Academic Publishers, Boston (1997)

    Google Scholar 

  3. Beer, S., Appelrath, H.J.: A formal model for agent-based coalition formation in electricity markets. In: Innovative Smart Grid Technologies Europe (IEEE ISGT EUROPE), pp. 1–5, October 2013

    Google Scholar 

  4. Bistaffa, F., Farinelli, A., Vinyals, M., Rogers, A.: Decentralised stable coalition formation among energy consumers in the smart grid (demonstration). In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 3, pp. 1461–1462. International Foundation for Autonomous Agents and Multiagent Systems, AAMAS 2012, Richland, SC (2012)

    Google Scholar 

  5. Bremer, J., Rapp, B., Sonnenschein, M.: Support vector based encoding of distributed energy resources’ feasible load spaces. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe. Chalmers Lindholmen, Gothenburg, Sweden (2010)

    Google Scholar 

  6. Bremer, J., Sonnenschein, M.: Constraint-handling for optimization with support vector surrogate models - a novel decoder approach. In: Filipe, J., Fred, A. (eds.) ICAART 2013 - Proceedings of the 5th International Conference on Agents and Artificial Intelligence, vol. 2, pp. 91–105. SciTePress, Barcelona, Spain (2013)

    Google Scholar 

  7. Bremer, J., Sonnenschein, M.: Estimating shapley values for fair profit distribution in power planning smart grid coalitions. In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) MATES 2013. LNCS, vol. 8076, pp. 208–221. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Bremer, J., Sonnenschein, M.: Sampling the search space of energy resources for self-organized, agent-based planning of active power provision. In: Page, B., Fleischer, A.G., Göbel, J., Wohlgemuth, V. (eds.) 27th International Conference on Environmental Informatics for Environmental Protection, EnviroInfo 2013, pp. 214–222. Shaker (2013)

    Google Scholar 

  9. Champsaur, P.: How to share the cost of a public good? Int. J. Game Theory 4, 113–129 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. de O Ramos, G., Rial, J., Bazzan, A.: Self-adapting coalition formation among electric vehicles in smart grids. In: 2013 IEEE 7th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 11–20, September 2013

    Google Scholar 

  11. European Parliament & Council: Directive 2009/28/ec of 23 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/ec and 2003/30/ec, April 2009

    Google Scholar 

  12. Friedman, E., Moulin, H.: Three methods to share joint costs or surplus. J. Econ. Theory 87(2), 275–312 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gensollen, N., Becker, M., Gauthier, V., Marot, M.: Coalition formation algorithm of prosumers in a smart grid environment. In: 2015 IEEE International Conference on Communications, ICC 2015, London, United Kingdom, June 8–12, 2015, pp. 5896–5902. IEEE (2015)

    Google Scholar 

  14. Hinrichs, C.: Selbstorganisierte Einsatzplanung dezentraler Akteure im Smart Grid. Ph.D. thesis, Carl von Ossietzky Universit Oldenburg (2014)

    Google Scholar 

  15. Hinrichs, C., Bremer, J., Sonnenschein, M.: Distributed hybrid constraint handling in large scale virtual power plants. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe (ISGT Europe 2013). IEEE Power & Energy Society (2013)

    Google Scholar 

  16. Hinrichs, C., Lehnhoff, S., Sonnenschein, M.: A decentralized heuristic for multiple-choice combinatorial optimization problems. In: Helber, S., et al. (eds.) Operations Research Proceedings 2012, pp. 297–302. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  17. Hinrichs, C., Sonnenschein, M., Lehnhoff, S.: Evaluation of a self-organizing heuristic for interdependent distributed search spaces. In: Filipe, J., Fred, A.L.N. (eds.) International Conference on Agents and Artificial Intelligence (ICAART 2013). vol. 1, pp. 25–34. SciTePress (2013)

    Google Scholar 

  18. Hsu, M.-C., Soo, V.-W.: Fairness in cooperating multi-agent systems – using profit sharing as an example. In: Lukose, D., Shi, Z. (eds.) PRIMA 2005. LNCS, vol. 4078, pp. 153–162. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Kahan, J., Rapoport, A.: Theories of Coalition Formation. Basic Studies in Human Behavior. L. Erlbaum Associates, Hillsdale (1984)

    MATH  Google Scholar 

  20. Kamphuis, R., Warmer, C., Hommelberg, M., Kok, K.: Massive coordination of dispersed generation using powermatcher based software agents. In: 19th International Conference on Electricity Distribution, May 2007

    Google Scholar 

  21. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lima, J., Pereira, M., Pereira, J.: An integrated framework for cost allocation in a multi-owned transmission-system. IEEE Trans. Power Syst. 10(2), 971–977 (1995)

    Article  Google Scholar 

  23. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. CoRR abs/1007.4063 (2010)

    Google Scholar 

  24. Mas-Colell, A.: Remarks on the game-theoretic analysis of a simple distribution of surplus problem. Int. J. Game Theory 9, 125–140 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  26. Neugebauer, J., Kramer, O., Sonnenschein, M.: Classification cascades of overlapping feature ensembles for energy time series data. In: Aung, Z., et al. (eds.) DARE 2015. LNCS, vol. 9518, pp. 76–93. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27430-0_6

    Chapter  Google Scholar 

  27. Nie, A., Lehnhoff, S., Trchel, M., Uslar, M., Wissing, C., Appelrath, H.J., Sonnenschein, M.: Market-based self-organized provision of active power and ancillary services: An agent-based approach for smart distribution grids. In: 2012 Complexity in Engineering (COMPENG), pp. 1–5, June 2012

    Google Scholar 

  28. Nieße, A., Beer, S., Bremer, J., Hinrichs, C., Lünsdorf, O., Sonnenschein, M.: Conjoint dynamic aggregation and scheduling for dynamic virtual power plants. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Federated Conference on Computer Science and Information Systems - FedCSIS 2014, Warsaw, Poland, September 2014

    Google Scholar 

  29. Nieße, A., Sonnenschein, M.: A fully distributed continuous planning approach for decentralized energy units. In: Cunningham, D.W., Hofstedt, P., Meer, K., Schmitt, I. (eds.) Informatik 2015. GI-Edition - Lecture Notes in Informatics (LNI), vol. 246, pp. 151–165. Bonner Köllen Verlag (2015)

    Google Scholar 

  30. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)

    Article  Google Scholar 

  31. Rahwan, T., Michalak, T.P., Wooldridge, M., Jennings, N.R.: Coalition structure generation: A survey. Artif. Intell. 229, 139–174 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rahwan, T., Ramchurn, S.D., Jennings, N.R., Giovannucci, A.: An anytime algorithm for optimal coalition structure generation. CoRR abs/1401.3466 (2014)

    Google Scholar 

  33. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Agent-based homeostatic control for green energy in the smart grid. ACM Trans. Intell. Syst. Technol. 2(4), 35:1–35:28 (2011)

    Article  MATH  Google Scholar 

  34. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Putting the ‘smarts’ into the smart grid: A grand challenge for artificial intelligence. Commun. ACM 55(4), 86–97 (2012)

    Article  Google Scholar 

  35. Saad, W., Han, Z., Poor, H.V., Basar, T.: Game theoretic methods for the smart grid. CoRR abs/1202.0452 (2012)

    Google Scholar 

  36. Sen, A.K.: Labour allocation in a cooperative enterprise. Rev. Econ. Stud. 33(4), 361–371 (1966)

    Article  Google Scholar 

  37. Sonnenschein, M., Appelrath, H.J., Canders, W.R., Henke, M., Uslar, M., Beer, S., Bremer, J., Lünsdorf, O., Nieße, A., Psola, J.H., et al.: Decentralized provision of active power. In: Smart Nord - Final Report. Hartmann GmbH, Hannover (2015)

    Google Scholar 

  38. Sonnenschein, M., Hinrichs, C., Nieße, A., Vogel, U.: Supporting renewable power supply through distributed coordination of energy resources. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 387–404. Springer, Heidelberg (2015)

    Google Scholar 

  39. Vinyals, M., Bistaffa, A., Farinelli, A., Rogers, A.: Stable coalition formation among energy consumers in the smart grid. In: Proceedings of the 3th International Workshop on Agent Technologies for Energy Systems (ATES 2012), pp. 73–80, June 2012

    Google Scholar 

  40. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Bremer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bremer, J., Lehnhoff, S. (2016). Decentralized Coalition Formation in Agent-Based Smart Grid Applications. In: Bajo, J., et al. Highlights of Practical Applications of Scalable Multi-Agent Systems. The PAAMS Collection. PAAMS 2016. Communications in Computer and Information Science, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-319-39387-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39387-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39386-5

  • Online ISBN: 978-3-319-39387-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics