Advertisement

Decentralized Coalition Formation in Agent-Based Smart Grid Applications

  • Jörg BremerEmail author
  • Sebastian Lehnhoff
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 616)

Abstract

A steadily growing pervasion of the energy grid with communication technology is widely seen as an enabler for new computational coordination techniques for renewable, distributed generation as well as for controllable consumers. One important task is the ability to group together in order to jointly gain enough suitable flexibility and capacity to assume responsibility for a specific control task in the grid. We present a fully decentralized coalition formation approach based on an established heuristic for predictive scheduling with the additional advantage of keeping all information about local decision base and local operational constraints private. The approach is evaluated in several simulation scenarios with different type of established models for integrating distributed energy resources.

Keywords

Smart grid Coalition formation Coalition structure generation Combinatorial heuristics 

References

  1. 1.
    Abarrategui, O., Marti, J., Gonzalez, A.: Constructing the active european power grid. In: Proceedings of WCPEE 2009, Cairo (2009)Google Scholar
  2. 2.
    Awerbuch, S., Preston, A.M. (eds.): The Virtual Utility: Accounting, Technology & Competitive Aspects of the Emerging Industry. Topics in Regulatory Economics and Policy, vol. 26. Kluwer Academic Publishers, Boston (1997)Google Scholar
  3. 3.
    Beer, S., Appelrath, H.J.: A formal model for agent-based coalition formation in electricity markets. In: Innovative Smart Grid Technologies Europe (IEEE ISGT EUROPE), pp. 1–5, October 2013Google Scholar
  4. 4.
    Bistaffa, F., Farinelli, A., Vinyals, M., Rogers, A.: Decentralised stable coalition formation among energy consumers in the smart grid (demonstration). In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 3, pp. 1461–1462. International Foundation for Autonomous Agents and Multiagent Systems, AAMAS 2012, Richland, SC (2012)Google Scholar
  5. 5.
    Bremer, J., Rapp, B., Sonnenschein, M.: Support vector based encoding of distributed energy resources’ feasible load spaces. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe. Chalmers Lindholmen, Gothenburg, Sweden (2010)Google Scholar
  6. 6.
    Bremer, J., Sonnenschein, M.: Constraint-handling for optimization with support vector surrogate models - a novel decoder approach. In: Filipe, J., Fred, A. (eds.) ICAART 2013 - Proceedings of the 5th International Conference on Agents and Artificial Intelligence, vol. 2, pp. 91–105. SciTePress, Barcelona, Spain (2013)Google Scholar
  7. 7.
    Bremer, J., Sonnenschein, M.: Estimating shapley values for fair profit distribution in power planning smart grid coalitions. In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) MATES 2013. LNCS, vol. 8076, pp. 208–221. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Bremer, J., Sonnenschein, M.: Sampling the search space of energy resources for self-organized, agent-based planning of active power provision. In: Page, B., Fleischer, A.G., Göbel, J., Wohlgemuth, V. (eds.) 27th International Conference on Environmental Informatics for Environmental Protection, EnviroInfo 2013, pp. 214–222. Shaker (2013)Google Scholar
  9. 9.
    Champsaur, P.: How to share the cost of a public good? Int. J. Game Theory 4, 113–129 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    de O Ramos, G., Rial, J., Bazzan, A.: Self-adapting coalition formation among electric vehicles in smart grids. In: 2013 IEEE 7th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 11–20, September 2013Google Scholar
  11. 11.
    European Parliament & Council: Directive 2009/28/ec of 23 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/ec and 2003/30/ec, April 2009Google Scholar
  12. 12.
    Friedman, E., Moulin, H.: Three methods to share joint costs or surplus. J. Econ. Theory 87(2), 275–312 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gensollen, N., Becker, M., Gauthier, V., Marot, M.: Coalition formation algorithm of prosumers in a smart grid environment. In: 2015 IEEE International Conference on Communications, ICC 2015, London, United Kingdom, June 8–12, 2015, pp. 5896–5902. IEEE (2015)Google Scholar
  14. 14.
    Hinrichs, C.: Selbstorganisierte Einsatzplanung dezentraler Akteure im Smart Grid. Ph.D. thesis, Carl von Ossietzky Universit Oldenburg (2014)Google Scholar
  15. 15.
    Hinrichs, C., Bremer, J., Sonnenschein, M.: Distributed hybrid constraint handling in large scale virtual power plants. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe (ISGT Europe 2013). IEEE Power & Energy Society (2013)Google Scholar
  16. 16.
    Hinrichs, C., Lehnhoff, S., Sonnenschein, M.: A decentralized heuristic for multiple-choice combinatorial optimization problems. In: Helber, S., et al. (eds.) Operations Research Proceedings 2012, pp. 297–302. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Hinrichs, C., Sonnenschein, M., Lehnhoff, S.: Evaluation of a self-organizing heuristic for interdependent distributed search spaces. In: Filipe, J., Fred, A.L.N. (eds.) International Conference on Agents and Artificial Intelligence (ICAART 2013). vol. 1, pp. 25–34. SciTePress (2013)Google Scholar
  18. 18.
    Hsu, M.-C., Soo, V.-W.: Fairness in cooperating multi-agent systems – using profit sharing as an example. In: Lukose, D., Shi, Z. (eds.) PRIMA 2005. LNCS, vol. 4078, pp. 153–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Kahan, J., Rapoport, A.: Theories of Coalition Formation. Basic Studies in Human Behavior. L. Erlbaum Associates, Hillsdale (1984)zbMATHGoogle Scholar
  20. 20.
    Kamphuis, R., Warmer, C., Hommelberg, M., Kok, K.: Massive coordination of dispersed generation using powermatcher based software agents. In: 19th International Conference on Electricity Distribution, May 2007Google Scholar
  21. 21.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lima, J., Pereira, M., Pereira, J.: An integrated framework for cost allocation in a multi-owned transmission-system. IEEE Trans. Power Syst. 10(2), 971–977 (1995)CrossRefGoogle Scholar
  23. 23.
    Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. CoRR abs/1007.4063 (2010)Google Scholar
  24. 24.
    Mas-Colell, A.: Remarks on the game-theoretic analysis of a simple distribution of surplus problem. Int. J. Game Theory 9, 125–140 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  26. 26.
    Neugebauer, J., Kramer, O., Sonnenschein, M.: Classification cascades of overlapping feature ensembles for energy time series data. In: Aung, Z., et al. (eds.) DARE 2015. LNCS, vol. 9518, pp. 76–93. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-27430-0_6 CrossRefGoogle Scholar
  27. 27.
    Nie, A., Lehnhoff, S., Trchel, M., Uslar, M., Wissing, C., Appelrath, H.J., Sonnenschein, M.: Market-based self-organized provision of active power and ancillary services: An agent-based approach for smart distribution grids. In: 2012 Complexity in Engineering (COMPENG), pp. 1–5, June 2012Google Scholar
  28. 28.
    Nieße, A., Beer, S., Bremer, J., Hinrichs, C., Lünsdorf, O., Sonnenschein, M.: Conjoint dynamic aggregation and scheduling for dynamic virtual power plants. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Federated Conference on Computer Science and Information Systems - FedCSIS 2014, Warsaw, Poland, September 2014Google Scholar
  29. 29.
    Nieße, A., Sonnenschein, M.: A fully distributed continuous planning approach for decentralized energy units. In: Cunningham, D.W., Hofstedt, P., Meer, K., Schmitt, I. (eds.) Informatik 2015. GI-Edition - Lecture Notes in Informatics (LNI), vol. 246, pp. 151–165. Bonner Köllen Verlag (2015)Google Scholar
  30. 30.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)CrossRefGoogle Scholar
  31. 31.
    Rahwan, T., Michalak, T.P., Wooldridge, M., Jennings, N.R.: Coalition structure generation: A survey. Artif. Intell. 229, 139–174 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Rahwan, T., Ramchurn, S.D., Jennings, N.R., Giovannucci, A.: An anytime algorithm for optimal coalition structure generation. CoRR abs/1401.3466 (2014)Google Scholar
  33. 33.
    Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Agent-based homeostatic control for green energy in the smart grid. ACM Trans. Intell. Syst. Technol. 2(4), 35:1–35:28 (2011)CrossRefzbMATHGoogle Scholar
  34. 34.
    Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Putting the ‘smarts’ into the smart grid: A grand challenge for artificial intelligence. Commun. ACM 55(4), 86–97 (2012)CrossRefGoogle Scholar
  35. 35.
    Saad, W., Han, Z., Poor, H.V., Basar, T.: Game theoretic methods for the smart grid. CoRR abs/1202.0452 (2012)Google Scholar
  36. 36.
    Sen, A.K.: Labour allocation in a cooperative enterprise. Rev. Econ. Stud. 33(4), 361–371 (1966)CrossRefGoogle Scholar
  37. 37.
    Sonnenschein, M., Appelrath, H.J., Canders, W.R., Henke, M., Uslar, M., Beer, S., Bremer, J., Lünsdorf, O., Nieße, A., Psola, J.H., et al.: Decentralized provision of active power. In: Smart Nord - Final Report. Hartmann GmbH, Hannover (2015)Google Scholar
  38. 38.
    Sonnenschein, M., Hinrichs, C., Nieße, A., Vogel, U.: Supporting renewable power supply through distributed coordination of energy resources. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 387–404. Springer, Heidelberg (2015)Google Scholar
  39. 39.
    Vinyals, M., Bistaffa, A., Farinelli, A., Rogers, A.: Stable coalition formation among energy consumers in the smart grid. In: Proceedings of the 3th International Workshop on Agent Technologies for Energy Systems (ATES 2012), pp. 73–80, June 2012Google Scholar
  40. 40.
    Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of OldenburgOldenburgGermany

Personalised recommendations