Experiments with Multiple BDI Agents with Dynamic Learning Capabilities

  • Amelia BădicăEmail author
  • Costin Bădică
  • Maria Ganzha
  • Mirjana Ivanović
  • Marcin Paprzycki
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 616)


In this paper we show how multiple BDI agents, enhanced with temporal difference learning capabilities, learn their utility function, while they are concurrently exploring an uncertain environment. We focus on the programming aspects of the agents using the Jason agent-oriented programming language. We also provide experimental results showing the behavior of multiple agents acting in a Markovian grid environment. We consider agents with the perception function affected by the intermittent faults and Gaussian noise, as well as agents for which their action function is not always successful.


BDI agent Reinforcement learning Agent-oriented programming 


  1. 1.
    Bădică, C., Budimac, Z., Burkhard, H.-D., Ivanović, M.: Software agents: Languages, tools, platforms. Comput. Sci. Inf. Syst. 8(2), 255–298 (2011). doi: 10.2298/CSIS110214013B CrossRefGoogle Scholar
  2. 2.
    Bădică, A., Bădică, C., Ivanović, M., Mitrović, D.: An approach of temporal difference learning using agent-oriented programming. In: Proceedings of the 20th International Conference on Control Systems and Computer Science (CSCS 2015), pp. 735–742. IEEE, (2015).  10.1109/CSCS.2015.71
  3. 3.
    Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE, ser. Wiley Series in Agent Technology. John Wiley & Sons Ltd (2007)Google Scholar
  4. 4.
    Bordini, R.H., Hũbner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak using Jason, ser. Wiley Series in Agent Technology. Wiley (2007)Google Scholar
  5. 5.
    Hübner, J.F., Bordini, R.H., Wooldridge, M.J.: Programming declarative goals using plan patterns. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS (LNAI), vol. 4327, pp. 123–140. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Jason: a Java-based interpreter for an extended version of AgentSpeak. Accessed February, 2016
  7. 7.
    Jennings, N.R., Wooldridge, M.: Applications of intelligent agents. In: Jennings, N.R., Wooldridge, M.J. (eds.) Agent Technology, pp. 3–28. Heidelberg (1998).
  8. 8.
    Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Van de Velde, W., Perram, J.W. (eds.) Agents Breaking Away. LNCS, vol. 1038, pp. 42–45. Springer, Heidelberg (1996). doi: 10.1007/BFb0031845 CrossRefGoogle Scholar
  9. 9.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Series in Artificial Intelligence, 3rd edn. Prentice Hall, Saddle River (2010)zbMATHGoogle Scholar
  10. 10.
    Shoham, Y.: Agent-oriented programming. Artif. Intell. 60(11), 51–92 (1993). doi: 10.1016/0004-3702(93)90034-9 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sutton, R.S.: Learning to predict by the methods of temporal differences. Mach. Learn. 3(1), 9–44 (1998). doi: 10.1007/BF00115009 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Amelia Bădică
    • 1
    Email author
  • Costin Bădică
    • 1
  • Maria Ganzha
    • 2
  • Mirjana Ivanović
    • 3
  • Marcin Paprzycki
    • 2
  1. 1.University of CraiovaCraiovaRomania
  2. 2.Polish Academy of Sciences, Systems Research InstituteWarszawaPoland
  3. 3.Faculty of SciencesNovi SadSerbia

Personalised recommendations