One of the main objectives of AI is modelling human reasoning. Since preference information is an indispensable component of common-sense reasoning, the two should be studied in tandem. Argumentation is an established branch of AI dedicated to this task. In this paper, we study how argumentation with preferences models human intuition behind a particular decision making scenario concerning reasoning with rules and preferences. To this end, we present an example of a common-sense reasoning problem complemented with a survey of decisions made by human respondents. The survey reveals an answer that contrasts with solutions offered by various argumentation formalisms. We argue that our results call for advancements of approaches to argumentation with preferences as well as for examination of the type of problems of reasoning with preferences put forward in this paper. Our work contributes to the line of research on preference handling in argumentation, and it also enriches the discussions on the increasingly important topic of preference treatment in AI at large.


Argumentation Preferences Reasoning 


  1. 1.
    Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable arguments. Ann. Math. Artif. Intell. 34(1–3), 197–215 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Amgoud, L., Prade, H.: Using arguments for making and explaining decisions. Artif. Intell. 173(3–4), 413–436 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Amgoud, L., Vesic, S.: Rich preference-based argumentation frameworks. Int. J. Approximate Reasoning 55(2), 585–606 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(04), 365–410 (2011)CrossRefGoogle Scholar
  5. 5.
    Baroni, P., Cerutti, F., Giacomin, M., Guida, G.: AFRA: argumentation framework with recursive attacks. Int. J. Approximate Reasoning 52(1), 19–37 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bench-Capon, T.: Persuasion in practical argument using value based argumentation frameworks. J. Logic Comput. 13(3), 429–448 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Besnard, P., García, A., Hunter, A., Modgil, S., Prakken, H., Simari, G., Toni, F.: Introduction to structured argumentation. Argument Computat. 5(1), 1–4 (2014)CrossRefGoogle Scholar
  8. 8.
    Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1–2), 203–235 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Besnard, P., Hunter, A.: Constructing argument graphs with deductive arguments: a tutorial. Argument Computat. 5(1), 5–30 (2014)CrossRefGoogle Scholar
  10. 10.
    Bondarenko, A., Dung, P.M., Kowalski, R., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93(97), 63–101 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artif. Intell. 109(1–2), 297–356 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J., Woltran, S.: Abstract dialectical frameworks revisited. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), pp. 803–809. IJCAI/AAAI, Beijing (2013)Google Scholar
  13. 13.
    Brewka, G., Truszczynski, M., Niemelä, I.: Preferences and nonmonotonic reasoning. AI Mag. 29(4), 69–78 (2008)Google Scholar
  14. 14.
    Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif. Intell. 171(5–6), 286–310 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Carrera, Á., Iglesias, C.: A systematic review of argumentation techniques for multi-agent systems research. Artif. Intell. Rev. 44(4), 509–535 (2015)CrossRefGoogle Scholar
  16. 16.
    Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Springer, Heidelberg (1978)CrossRefGoogle Scholar
  17. 17.
    Čyras, K., Toni, F.: ABA+: assumption-based argumentation with preferences. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference (KR), to appear. Cape Town (2016)Google Scholar
  18. 18.
    Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A classification and survey of preference handling approaches in nonmonotonic reasoning. Comput. Intell. 20(2), 308–334 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in ai: an overview. Artif. Intell. 175(7–8), 1037–1052 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dung, P.M.: An axiomatic Analysis of Structured Argumentation with Priorities. Artif. Intell. 231, 107–150 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dunne, P., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument systems: basic definitions, algorithms, and complexity results. Artif. Intell. 175(2), 457–486 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    García, A., Simari, G.: Defeasible logic programming: an argumentative approach. Theor. Pract. Logic Program. 4(2), 95–138 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    García, A., Simari, G.: Defeasible logic programming: DeLP-servers, contextual queries, and explanations for answers. Argument Comput. 5(1), 63–88 (2014)CrossRefGoogle Scholar
  25. 25.
    Gorogiannis, N., Hunter, A.: Instantiating abstract argumentation with classical logic arguments: postulates and properties. Artif. Intell. 175(9–10), 1479–1497 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kaci, S.: Working with Preferences. Less is More. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  27. 27.
    Kaci, S., van der Torre, L.: Preference-based argumentation: arguments supporting multiple values. Int. J. Approximate Reasoning 48(3), 730–751 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47(2), 263–291 (1979)CrossRefzbMATHGoogle Scholar
  29. 29.
    Kakas, A., Moraitis, P.: Argumentation based decision making for autonomous agents. In: The Second International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 883–890. ACM Press, Melbourne (2003)Google Scholar
  30. 30.
    Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell. 173(9–10), 901–934 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Modgil, S., Prakken, H.: Reasoning about preferences in structured extended argumentation frameworks. Front. Artif. Intell. Appl. 216(9–10), 347–358 (2010)Google Scholar
  32. 32.
    Modgil, S., Prakken, H.: A general account of argumentation with preferences. Artif. Intell. 195, 361–397 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Modgil, S., Prakken, H.: The ASPIC+ framework for structured argumentation: a tutorial. Argument Comput. 5(1), 31–62 (2014)CrossRefGoogle Scholar
  34. 34.
    Rahwan, I., Simari, G.: Argumentation in Artificial Intelligence. Springer, Heidelberg (2009)Google Scholar
  35. 35.
    Toni, F.: A tutorial on assumption-based argumentation. Argument Comput. 5(1), 89–117 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Wakaki, T.: Preference-based argumentation built from prioritized logic programming. J. Logic Comput. 25(2), 251–301 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Wakaki, T.: Assumption-based argumentation equipped with preferences. In: Dam, H.K., Pitt, J., Xu, Y., Governatori, G., Ito, T. (eds.) PRIMA 2014. LNCS, vol. 8861, pp. 116–132. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations