Holonic Multiagent Simulation of Complex Adaptive Systems

  • Rafik HadfiEmail author
  • Takayuki Ito
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 616)


We propose a holonic multiagent simulator that can simulate any complex urban environment. We focus on traffic simulation within any geographic area on earth, subject to any weather conditions. We adopt an agent-based approach for the different beahviors of the vehicles, drivers, and pedestrians. The proposed driving behavioral models can realistically emulate driving behaviors of humans. The resulting simulator can handle all the complexities of such environments in accordance with the laws of physics.


Multiagent simulation Holonic system Traffic simulation Geographic information system Mobility generation Weather simulation 



This work has been partially supported by the project “Multiagent Future Traffic Prediction to Relieve Traffic Congestion” in the issue “Research and Development on Applications of Social Big Data”.


  1. 1.
    Chen, B., Cheng, H.: A review of the applications of agent technology in traffic and transportation systems. IEEE Trans. Intell. Transp. Syst. 11, 485–497 (2010)CrossRefGoogle Scholar
  2. 2.
    Davidsson, P.: Multi Agent Based Simulation: Beyond Social Simulation. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Dia, H.: An agent-based approach to modelling driver route choice behaviour under the influence of real-time information. Transp. Res. Part C: Emerg. Technol. 10(5–6), 331–349 (2002)CrossRefGoogle Scholar
  4. 4.
    Doniec, A., Mandiau, R., Piechowiak, S., Espie, S.: A behavioral multi-agent model for road traffic simulation. Transp. Res. Part C: Emerg. Technol. 21(8), 1443–1454 (2011)Google Scholar
  5. 5.
    Espie, S.: Archisim, multi-actor parallel architecture for traffic simulation. In: Proceedings of the Second World Congress on Intelligent Transport Systems, vol. 4 (1995)Google Scholar
  6. 6.
    Fischer, K., Schillo, M., Siekmann, J.H.: Holonic multiagent systems: a foundation for the organisation of multiagent systems. In: Mařík, V., McFarlane, D.C., Valckenaers, P. (eds.) HoloMAS 2003. LNCS (LNAI), vol. 2744, pp. 71–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Gilbert, N.: Computer Simulation of Social Processes. Number 6. Social Research Update, Department of Sociology, University of Surrey, UK (1994)Google Scholar
  8. 8.
    Haklay, M.M., Weber, P.: Openstreetmap: user-generated street maps. IEEE Pervasive Comput. 7(4), 12–18 (2008)CrossRefGoogle Scholar
  9. 9.
    Harding, A.: Microsimulation and Public Policy. Elsevier, Amsterdam (1996)Google Scholar
  10. 10.
    Hattori, H., Nakajima, Y., Yamane, S.: Massive multiagent-based urban traffic simulation with fine-grained behavior models (2011)Google Scholar
  11. 11.
    Lieberman, E., Rathi, A.: Traffic flow theory. Trans. Res. Part C: Emerg. Technol. (1997)Google Scholar
  12. 12.
    Misra, J.: Distributed discrete-event simulation. ACM Comput. Surv. (CSUR) 18, 39–65 (1986)CrossRefGoogle Scholar
  13. 13.
    Nagel, K., Marchal, F.: Computational methods for multi-agent simulations of travel behaviour. In: Proceedings of International Association for Travel Behavior Research (IATBR), Lucerne, Switzerland (2003)Google Scholar
  14. 14.
    Rossetti, R.J., Bordini, R.H., Bazzan, A.L., Bampi, S., Liu, R., Vliet, D.V.: Using BDI agents to improve driver modelling in a commuter scenario. Trans. Res. Part C: Emerg. Technol. 10(5–6), 373–398 (2002)CrossRefGoogle Scholar
  15. 15.
    Rossetti, R.J., Liu, R., Cybis, H.B., Bampi, S.: A multi-agent demand model. In: Proceedings of the 13th Mini-Euro Conference and the 9th Meeting of the Euro Working Group Transportation, pp. 193–198, Bari, Italy (2002)Google Scholar
  16. 16.
    Russell, S., Norvig, P.: Artificial intelligence: a modern approach (1995)Google Scholar
  17. 17.
    Sumalee, A., Zhong, R., Pan, T., Szeto, W.: Stochastic cell transmission model (SCTM): a stochastic dynamic traffic model for traffic state surveillance and assignment. Trans. Res. Part B: Methodol. 45(3), 507–533 (2011)CrossRefGoogle Scholar
  18. 18.
    Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10(02), 115–152 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations