Skip to main content

Local Modeling with Local Dimensionality Reduction: Learning Method of Mini-Models

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9693))

Included in the following conference series:

Abstract

The paper presents a new version on the mini-models method (MM-method). Generally, the MM-method identifies not the full global model of a system but only a local model of the neighborhood of the query point of our special interest. It is an instance-based learning method similarly as the k-nearest algorithm, GRNN network or RBF network but its idea is different. In the MM-method the learning process is based on a group of points that is constrained by a polytope. The first MM-method was described in previous publications of authors. In this paper a new version of the MM-method is presented. In comparison to the previous version it was extended by local dimensionality reduction. As experiments have shown this reduction not only simplifies local models but also in most cases allows for increasing the local model precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piegat, A., Wasikowska, B., Korzeń, M.: Application of the self-learning, 3-point mini-model for modelling of unemployment rate in Poland. [in Polish] Studia Informatica, nr 27, University of Szczecin, pp. 59–69 (2010)

    Google Scholar 

  2. Piegat, A., Wasikowska, B., Korzeń, M.: Differences between the method of mini-models and the k-nearest neighbors an example of modeling unemployment rate in Poland. Information Systems in Management IX-Business Intelligence and Knowledge Management, pp. 34–43. WULS Press, Warsaw (2011)

    Google Scholar 

  3. Pietrzykowski, M.: The use of linear and nonlinear mini-models in process of data modeling in a 2D-space. Nowe trendy w Naukach Inzynieryjnych, pp. 100–108. CREATIVETIME, Krakow (2011)

    Google Scholar 

  4. Pietrzykowski, M.: Effectiveness of mini-models method when data modelling within a 2D-space in an information deficiency situation. J. Theor. Appl. Comput. Sci. 6(3), 21–27 (2012)

    Google Scholar 

  5. Pietrzykowski, M.: Comparison between mini-models based on multidimensional polytopes and k-nearest neighbor method: case study of 4D and 5D problems. In: Wiliński, A., El Fray, I., Pejaś, J. (eds.) Soft Computing in Computer and Information Science. Advances in Intelligent Systems and Computing, vol. 342, pp. 107–118. Springer, Switzerland (2015)

    Google Scholar 

  6. Pietrzykowski, M., Piegat, A.: Geometric approach in local modeling: learning of mini-models based on n-dimensional simplex. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9120, pp. 460–470. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  7. Pluciński, M.: Application of mini-models to the interval information granules processing. In: Wiliński, A., El Fray, I., Pejaś, J. (eds.) Soft Computing in Computer and Information Science. Advances in Intelligent Systems and Computing, vol. 342, pp. 37–48. Springer, Switzerland (2015)

    Google Scholar 

  8. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Englewood Cliffs (2003). ISBN 0-13-080302-2

    MATH  Google Scholar 

  9. Kotsiantis, S.B., Zaharakis, I.D., Pintelas, P.E.: Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 26(3), 159–190 (2006)

    Article  Google Scholar 

  10. Destercke, S.: A K-nearest neighbours method based on imprecise probabilities. Soft. Comput. 16(5), 833–844 (2012)

    Article  Google Scholar 

  11. Celikoglu, H.B.: Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modelling. Math. Comput. Model. 44(7–8), 640–658 (2006)

    Article  MATH  Google Scholar 

  12. Lin, C.L., Wang, J.F., Chen, C.Y., Chen, C.W., Yen, C.W.: Improving the generalization performance of RBF neural networks using a linear regression technique. Expert Syst. Appl. 36(10), 12049–12053 (2009)

    Article  Google Scholar 

  13. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15(2), 265–286 (2006)

    Article  MathSciNet  Google Scholar 

  14. Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 228–233 (2001)

    Article  Google Scholar 

  15. Ji, S.W., Ye, J.P.: Generalized linear discriminant analysis: a unified framework and efficient model selection. IEEE Trans. Neural Netw. 19(10), 1768–1782 (2008)

    Article  Google Scholar 

  16. Law, M.H.C., Jain, A.K.: Incremental nonlinear dimensionality reduction by manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 377–391 (2006)

    Article  Google Scholar 

  17. Donoho, D.L., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc. Nat. Acad. Sci. U.S.A. 100(10), 5591–5596 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kutner, M.H., Nachtsheim, C.J., Neter, J., et al.: Applied Linear Statistical Models. McGraw-Hill/Irwin, Chicago (2005). ISBN 9780073108742

    Google Scholar 

  19. Rice, J.A.: Mathematical Statistics and Data Analysis. Duxbury Press, India (2006). ISBN 9780534399429

    Google Scholar 

  20. Bronshtein, I., Semendyayev, K., Musiol, G., Muhlig, H.: Handbook of Mathematics. Springer, Heidelberg (2007). ISBN 9783540721215

    MATH  Google Scholar 

  21. Moon, P., Spencer, D.: Field theory handbook: Including Coordinate Systems, Differential Equations, and Their Solutions. Springer, Heidelberg (1988). ISBN 9780387027326

    MATH  Google Scholar 

  22. Ruppert, D., Wand, M.P.: Multivariate locally weighted least-squares regression. Ann. Stat. 22(3), 1346–1370 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Piegat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Piegat, A., Pietrzykowski, M. (2016). Local Modeling with Local Dimensionality Reduction: Learning Method of Mini-Models. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9693. Springer, Cham. https://doi.org/10.1007/978-3-319-39384-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39384-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39383-4

  • Online ISBN: 978-3-319-39384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics