Skip to main content

A Modification of the Silhouette Index for the Improvement of Cluster Validity Assessment

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9693))

Abstract

In this paper a modification of the well-known Silhouette validity index is proposed. This index, which can be considered a measure of the data set partitioning accuracy, enjoys significant popularity and is often used by researchers. The proposed modification involves using an additional component in the original index. This approach improves performance of the index and provides better results during a clustering process, especially when changes of cluster separability are big. The new version of the index is called the SILA index and its maximum value identifies the best clustering scheme. The performance of the new index is demonstrated for several data sets, where the popular algorithm has been applied as underlying clustering techniques, namely the Complete–linkage algorithm. The results prove superiority of the new approach as compared to the original Silhouette validity index.

A. Krzyżak carried out this research at WUT during his sabbatical leave from Concordia University.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baskir, M.B., Türksen, I.B.: Enhanced fuzzy clustering algorithm and cluster validity index for human perception. Expert Syst. Appl. 40, 929–937 (2013)

    Article  Google Scholar 

  2. Bas, E.: The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting. J. Artif. Intell. Soft Comput. Res. 6(1), 5–11 (2016)

    Article  Google Scholar 

  3. Bertini, J.R., Nicoletti, M.C.: Enhancing constructive neural network performance using functionally expanded input data. J. Artif. Intell. Soft Comput. Res. 6(2), 119–131 (2016)

    Google Scholar 

  4. Bilski, J., Smolag, J.: Parallel architectures for learning the RTRN and Elman dynamic neural networks. IEEE Trans. Parallel Distrib. Syst. 26(9), 2561–2570 (2015)

    Article  Google Scholar 

  5. Bilski, J., Smoląg, J., Galushkin, A.I.: The parallel approach to the conjugate gradient learning algorithm for the feedforward neural networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 12–21. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Bilski, J., Smoląg, J.: Parallel approach to learning of the recurrent jordan neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 32–40. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Bilski, J., Smolag, J.: Parallel Realisation of the Recurrent Multi Layer Perceptron Learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 12–20. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Cpalka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), vols 1-5 Book Series: IEEE International Joint Conference on Neural Networks, pp. 1764–1769 (2005)

    Google Scholar 

  9. Cpaka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen Syst 42(6), 706–720 (2013)

    Article  MATH  Google Scholar 

  10. Duch, W., Korbicz, J., Rutkowski, L., Tadeusiewicz, R. (eds.): Biocybernetics and biomedical engineering 2000. Neural Networks, vol. 6, Akademicka Oficyna Wydawnicza, EXIT, (2000)

    Google Scholar 

  11. Fränti, P., Rezaei, M., Zhao, Q.: Centroid index: cluster level similarity measure. Pattern Recognit. 47(9), 3034–3045 (2014)

    Article  Google Scholar 

  12. Fred, L.N., Leitao, M.N.: A new cluster isolation criterion based on dissimilarity increments. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 944–958 (2003)

    Article  Google Scholar 

  13. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  14. Kim, M., Ramakrishna, R.S.: New indices for cluster validity assessment. Pattern Recogn. Lett. 26(15), 2353–2363 (2005)

    Article  Google Scholar 

  15. Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)

    Article  MathSciNet  Google Scholar 

  16. Korytkowski, M., Rutkowski, L., Scherer, R.: From ensemble of fuzzy classifiers to single fuzzy rule base classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Koshiyama, A.S., Vellasco, M., Tanscheit, R.: GPFIS-Control: a genetic fuzzy system for control tasks. J. Artif. Intell. Soft Comput. Res. 4(3), 167–179 (2014)

    Article  Google Scholar 

  18. Laskowski, L., Jelonkiewicz, J.: Self-correcting neural network for stereo-matching problem solving. Fundamenta Informaticae 138(4), 457–482 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, X., Er, M.J., Lim, B.S., et al.: Fuzzy regression modeling for tool performance prediction and degradation detection. Int. J. Neural Syst. 20(5), 405–419 (2010)

    Article  Google Scholar 

  20. Lichman, M.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2013). http://archive.ics.uci.edu/ml

    Google Scholar 

  21. Miyajima, H., Shigei, N., Miyajima, H.: Performance comparison of hybrid electromagnetism-like mechanism algorithms with descent method. J. Artif. Intell. Soft Comput. Res. 5(4), 271–282 (2015)

    Article  MATH  Google Scholar 

  22. Ozkan, I., Türksen, I.B.: MiniMax \(\varepsilon \)-stable cluster validity index for Type-2 fuzziness. Inf. Sci. 184(1), 64–74 (2012)

    Article  Google Scholar 

  23. Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 3(3), 370–379 (1995)

    Article  Google Scholar 

  24. Patgiri, C., Sarma, M., Sarma, K.K.: A class of neuro-computational methods for assamese fricative classification. J. Artif. Intell. Soft Comput. Res. 5(1), 59–70 (2015)

    Article  Google Scholar 

  25. Rigatos, G., Siano, P.: Flatness-based adaptive fuzzy control of spark-ignited engines. J. Artif. Intell. Soft Comput. Res. 4(4), 231–242 (2014)

    Article  Google Scholar 

  26. Rutkowski, L., Cpalka, K.: Flexible neuro-fuzzy systems. IEEE Trans. Neural Networks 14(3), 554–574 (2003)

    Article  Google Scholar 

  27. Rutkowski, L., Przybyl, A., Cpalka, K.: Novel online speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Industr. Electron. 59(2), 1238–1247 (2012)

    Article  Google Scholar 

  28. Rutkowski, L., Cpalka, K.: Designing and learning of adjustable quasi-triangular norms with applications to neuro-fuzzy systems. IEEE Trans. Fuzzy Syst. 13(1), 140–151 (2005)

    Article  Google Scholar 

  29. Rutkowski, L., Cpalka, K.: A general approach to neuro-fuzzy systems. In: 10th IEEE International Conference on Fuzzy Systems, vols. 1–3: Meeting the Grand Challenge: Machines that Serve People, pp. 1428–1431 (2001)

    Google Scholar 

  30. Rutkowski, L., Cpalka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control Cybern. 31(2), 297–308 (2002)

    MATH  Google Scholar 

  31. Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online Speed Profile Generation for Industrial Machine Tool Based on Neuro-fuzzy Approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 645–650. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  32. Rutkowski, L., Cpalka, K.: Compromise approach to neuro-fuzzy systems. Technol. Book Ser. Frontiers Artif. Intell. Appl. 76, 85–90 (2002)

    MATH  Google Scholar 

  33. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmids bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272–1279 (2013)

    Article  Google Scholar 

  34. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the Gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014)

    Article  Google Scholar 

  35. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: A new method for data stream mining based on the misclassification error. IEEE Trans. Neural Networks Learn. Syst. 26(5), 1048–1059 (2015)

    Article  MathSciNet  Google Scholar 

  36. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Inf. Sci. 266, 1–15 (2014)

    Article  Google Scholar 

  37. Saitoh, D., Hara, K.: Mutual learning using nonlinear perceptron. J. Artif. Intell. Soft Comput. Res. 5(1), 71–77 (2015)

    Article  Google Scholar 

  38. Sameh, A.S., Asoke, K.N.: Development of assessment criteria for clustering algorithms. Pattern Anal. Appl. 12(1), 79–98 (2009)

    Article  MathSciNet  Google Scholar 

  39. Shieh, H.-L.: Robust validity index for a modified subtractive clustering algorithm. Appl. Soft Comput. 22, 47–59 (2014)

    Article  Google Scholar 

  40. Starczewski, A.: A new validity index for crisp clusters. Pattern Anal. Appl. (2015). doi:10.1007/s10044-015-0525-8

    Google Scholar 

  41. Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on interval consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. Advances in Soft Computing, pp. 570–577. Springer-Verlag, Physica-Verlag HD, Heidelberg (2003)

    Chapter  Google Scholar 

  42. Starczewski, J.T., Rutkowski, L.: Connectionist structures of type 2 fuzzy inference systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, p. 634. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  43. Weka 3: Data mining software in Java. University of Waikato, New Zealand. http://www.cs.waikato.ac.nz/ml/weka

  44. Wozniak, M., Polap, D., Nowicki, R., Napoli, C., Pappalardo, G., Tramontana, E.: Novel approach toward medical signals classifier. In: 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Irlandia (2015). doi:10.1109/IJCNN.2015.7280556

  45. Wu, K.L., Yang, M.S., Hsieh, J.N.: Robust cluster validity indexes. Pattern Recogn. 42, 2541–2550 (2009)

    Article  MATH  Google Scholar 

  46. Zalik, K.R.: Cluster validity index for estimation of fuzzy clusters of different sizes and densities. Pattern Recogn. 43, 3374–3390 (2010)

    Article  MATH  Google Scholar 

  47. Zhang, D., Ji, M., Yang, J., Zhang, Y., Xie, F.: A novel cluster validity index for fuzzy clustering based on bipartite modularity. Fuzzy Sets Syst. 253, 122–137 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Starczewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Starczewski, A., Krzyżak, A. (2016). A Modification of the Silhouette Index for the Improvement of Cluster Validity Assessment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9693. Springer, Cham. https://doi.org/10.1007/978-3-319-39384-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39384-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39383-4

  • Online ISBN: 978-3-319-39384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics