Skip to main content

Memetic Optimization of Graphene-Like Materials on Intel PHI Coprocessor

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9692))

Included in the following conference series:

  • 1159 Accesses

Abstract

The paper is devoted to the optimization of energy of carbon based atomic structure with use of the memetic algorithm. The graphene like atoms structure is coded into floating point genes and underwent evolutionary changes. The global optimization algorithm is supported by local gradient based improvement of chromosomes. The optimization problem is solved with the use of Intel PHI (Intel Many Integrated Core Architecture – Intel MIC). The example of optimization and speedup measurement for parallel optimization are given in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cranford, S.W., Buehler, M.J.: Mechanical properties of graphyne. Carbon 49, 4111–4121 (2011)

    Article  Google Scholar 

  2. Enyashin, A.N., Ivanovskii, A.L.: Graphene allotropes. Phys. Status Solidi 248(8), 1879–1883 (2011)

    Article  Google Scholar 

  3. Narita, N., Nagai, S., Suzuki, S., Nakao, K.: Electronic structure of three-dimensional graphyne. Phys. Rev. B 62(16), 11146–11151 (2000)

    Article  Google Scholar 

  4. Peng, Q., Ji, W., De, S.: Mechanical properties of graphyne monolayers: a first-principles study. Phys. Chem. Chem. Phys. 14(38), 13385–13391 (2012)

    Article  Google Scholar 

  5. Scarpa, F., Adhikari, S., Phani, A.S.: Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20(6), 065709 (2009)

    Article  Google Scholar 

  6. Mrozek, A., Burczyński, T.: Examination of mechanical properties of graphene allotropes by means of computer simulation. Comput. Assist. Methods Eng. Sci. 20(4), 309–323 (2013)

    Google Scholar 

  7. Lloyd, L.D., Johnston, R.L.: Modelling aluminium clusters with an empirical many-body potential. Chem. Phys. 236, 107–121 (1998)

    Article  Google Scholar 

  8. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997)

    Article  Google Scholar 

  9. Roberts, C., Johnston, R.L., Wilson, N.T.: A genetic algorithm for the structural optimization of morse clusters. Theoret. Chem. Acc. 104, 123–130 (2000)

    Article  Google Scholar 

  10. Shao, X., Cheng, L., Cai, W.: An adaptive immune optimization algorithm for energy minimization problems. J. Chem. Phys. 120(24), 11401–11406 (2004)

    Article  Google Scholar 

  11. Zhou, J.C., Li, W.J., Zhu, J.B.: Particle swarm optimization computer simulation of Ni clusters. Trans. Nonferrous Met. Soc. China 18, 410–415 (2008)

    Article  Google Scholar 

  12. Mrozek, A., Kuś, W., Orantek, P., Burczyński, T.: Prediction of the aluminium atoms distribution using evolutionary algorithm. In: Recent Developments in Artificial Intelligence Methods, vol. 10, pp. 127–130 (2005)

    Google Scholar 

  13. Mrozek, A., Kuś, W., Burczyński, T.: Searching of stable configurations of nanostructures using computational intelligence methods. Czasopismo Techniczne 20(107), 85–97 (2010)

    MATH  Google Scholar 

  14. Lammps package www: http://lammps.sandia.gov

  15. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995)

    Article  MATH  Google Scholar 

  16. Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112(14), 6472–6486 (2000)

    Article  Google Scholar 

  17. Wang, Y., Lv, J., Zhu, L., Ma, Y.: Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82(9), 094116–0941123 (2010)

    Article  Google Scholar 

  18. Mrozek, A., Kuś, W., Burczyński, T.: Nano level optimization of graphene allotropes by means of a hybrid parallel evolutionary algorithm. Comput. Mater. Sci. 106, 161–169 (2015)

    Article  Google Scholar 

  19. Mrozek, A., Kuś, W., Burczyński, T.: Hybrid parallel evolutionary algorithm in optimization of 2D graphene-like materials. Comput. Methods Mater. Sci. 15(1), 103–110 (2015)

    Google Scholar 

  20. Chenoweth, K., van Duin, A.C., Goddard III, W.A.: ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 112, 1040–1053 (2003)

    Article  Google Scholar 

  21. Rappe, A.K., Goddard III, W.A.: Charge equilibration for molecular dynamics simulations. J. Chem. Phys. 95(8), 3358–3363 (1991)

    Article  Google Scholar 

  22. Nakano, A.: Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics. Comput. Phys. Commun. 104, 59–69 (1997)

    Article  Google Scholar 

  23. Burczyński, T., Kuś, W.: Optimization of structures using distributed and parallel evolutionary algorithms. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 572–579. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Ogierman, W., Kokot, G.: Modeling of constitutive behaviour of anisotropic composite material using multiscale approach. Mechanika 2, 118–122 (2015)

    Google Scholar 

  25. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flanery, B.P.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  26. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolutionary Algorithms. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  27. Moscato, P.: On genetic crossover operators for relative order preservation. C3P Report 778, California Institute of Technology, Pasadena, USA (1989)

    Google Scholar 

  28. Moscato, P., Cotta, C., Mendes, A.: Memetic algorithms. In: Onwubolu, G.C., Babu, B.V. (eds.) New Optimization Techniques in Engineering. Studies in Fuzziness and Soft Computing, vol. 141, pp. 53–85. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  29. Orantek, P.: Hybrid evolutionary algorithms in optimization of structures under dynamical loads. In: Burczyński, T., Osyczka, A. (eds.) IUTAM Symposium on Evolutionary Methods in Mechanics. Solid Mechanics and Its Applications, vol. 117, pp. 297–308. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  30. Ranman, R.: Intel Xeon Phi Coprocessor Architecture and Tools: The Guide for Applications Developers. ApressOpen, New York (2013)

    Book  Google Scholar 

  31. Kuś, W.: Grid-enabled evolutionary algorithm application in the mechanical optimization problems. Eng. Appl. Artif. Intell. 20(5), 629–636 (2007)

    Article  MathSciNet  Google Scholar 

  32. Kuś, W., Burczyński, T.: Parallel bioinspired algorithms in optimization of structures. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 1285–1292. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  33. OpenMP Architecture Review Board web page. http://openmp.org

Download references

Acknowledgement

The authors are grateful to Czestochowa University of Technology for granting access to Intel CPU and Xeon Phi platforms providing by the MICLAB project No. POIG.02.03.00.24-093/13

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wacław Kuś .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kuś, W., Mrozek, A., Burczyński, T. (2016). Memetic Optimization of Graphene-Like Materials on Intel PHI Coprocessor. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9692. Springer, Cham. https://doi.org/10.1007/978-3-319-39378-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39378-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39377-3

  • Online ISBN: 978-3-319-39378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics