Skip to main content

Rough Restricted Boltzmann Machine – New Architecture for Incomplete Input Data

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9692))

Included in the following conference series:

Abstract

In the paper, a rough restricted Boltzmann machine (RRBM) is proposed. It is a hybrid architecture, which extends the restricted Boltzmann machine (RBM) using some elements of the Pawlak rough set theory. The main goal of such hybridization is to allow processing the imperfect input data and expressing the imperfection in the answer of the system. In the paper, one form of the imperfection is considered - missing values. However, the solutions similar to presented one can be designed also to handle e.g. imprecise data. The formal definition of RRBM is illustrated by experimental results on a handwritten digits reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnard, J., Rubin, D.: Small-sample degrees of freedom with multiple imputation. Biometrika 86(4), 948–955 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bilski, J., Nowicki, R., Scherer, R., Litwiski, S.: Application of signal processor TMS320C30 to neural networks realisation. In: Proceedings of the Second Conference Neural Networks and Their Applications, Czestochowa 53–59 (1996)

    Google Scholar 

  3. Bilski, J., Litwiński, S., Smoląg, J.: Parallel realisation of QR algorithm for neural networks learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 158–165. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Bilski, J., Smoląg, J., Galushkin, A.I.: The parallel approach to the conjugate gradient learning algorithm for the feedforward neural networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 12–21. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  5. Bilski, J., Smoląg, J.: Parallel realisation of the recurrent RTRN neural network learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 11–16. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Bilski, J., Smoląg, J.: Parallel realisation of the recurrent Elman neural network learning. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 19–25. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Bilski, J., Smoląg, J.: Parallel realisation of the recurrent multi layer perceptron learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 12–20. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Bilski, J., Smoląg, J.: Parallel approach to learning of the recurrent jordan neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 32–40. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Chen, M., Ludwig, S.A.: Particle swarm optimization based fuzzy clustering approach to identify optimal number of clusters. J. Artif. Intell. Soft Comput. Res. 4(1), 43–56 (2014)

    Article  Google Scholar 

  10. Chu, J.L., Krzyzak, A.: The recognition of partially occluded objects with support vector machines and convolutional neural networks and deep belief networks. J. Artif. Intell. Soft Comput. Res. 4(1), 5–19 (2014)

    Article  Google Scholar 

  11. Cpalka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: IEEE International Joint Conference on Neural Networks, IJCNN 2005. Proceedings, vol. 3, pp 1764–1769, July 2005

    Google Scholar 

  12. Cpalka, K., Rutkowski, L.: Evolutionary learning of flexible neuro-fuzzy systems. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2008, (IEEE World Congress on Computational Intelligence), pp. 969–975, June 2008

    Google Scholar 

  13. Dourlens, S., Ramdane-Cherif, A.: Modeling & understanding environment using semantic agents. J. Artif. Intell. Soft Comput. Res. 1(4), 301–314 (2011)

    Google Scholar 

  14. El-Samak, A.F., Ashour, W.: Optimization of traveling salesman problem using affinity propagation clustering and genetic algorithm. J. Artif. Intell. Soft Comput. Res. 5(4), 239–245 (2015)

    Article  Google Scholar 

  15. Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R.: Content-based image indexing by data clustering and inverse document frequency. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B. (eds.) BDAS 2014. CCIS, vol. 424, pp. 374–383. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  16. Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R., Voloshynovskiy, S.: From single image to list of objects based on edge and blob detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part II. LNCS, vol. 8468, pp. 605–615. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  17. Hinton, G.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hinton, G.: A practical guide to training restricted Boltzmann machines. Momentum 9(1), 926 (2010)

    Google Scholar 

  19. Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/

  21. Karpathy, A.: Code for training restricted Boltzmann machines (RBM) and deep belief networks in MATLAB. https://code.google.com/p/matrbm/

  22. Kitajima, R., Kamimura, R.: Accumulative information enhancement in the self-organizing maps and its application to the analysis of mission statements. J. Artif. Intell. Soft Comput. Res. 5(3), 161–176 (2015)

    Article  Google Scholar 

  23. Korytkowski, M., Nowicki, R., Rutkowski, L., Scherer, R.: AdaBoost ensemble of DCOG rough–neuro–fuzzy systems. In: Jdrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 62–71. Springer, Heidelberg (2011)

    Google Scholar 

  24. Korytkowski, M., Nowicki, R., Scherer, R.: Neuro-fuzzy rough classifier ensemble. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 817–823. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inform. Sci. 327, 175–182 (2016)

    Article  MathSciNet  Google Scholar 

  26. Koshiyama, A.S., Vellasco, M.M.B.R., Tanscheit, R.: GPFIS-control: a genetic fuzzy system for control tasks. J. Artif. Intell. Soft Comput. Res. 4(3), 167–179 (2014)

    Article  Google Scholar 

  27. Laskowski, L., Laskowska, M.: Functionalization of SBA-15 mesoporous silica by Cu-phosphonate units: probing of synthesis route. J. Solid State Chem. 220, 221–226 (2014)

    Article  Google Scholar 

  28. Laskowski, L., Laskowska, M., Balanda, M., Fitta, M., Kwiatkowska, J., Dzilinski, K., Karczmarska, A.: Mesoporous silica SBA-15 functionalized by nickel-phosphonic units: Raman and magnetic analysis. Microporous Mesoporous Mater. 200, 253–259 (2014)

    Article  Google Scholar 

  29. Laskowski, Ł., Laskowska, M., Jelonkiewicz, J., Boullanger, A.: Spin-glass implementation of a Hopfield neural structure. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 89–96. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  30. Le Roux, N., Bengio, Y.: Representational power of restricted boltzmann machines and deep belief networks. Neural Comput. 20(6), 1631–1649 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lingras, P.: Comparison of neofuzzy and rough neural networks. Inf. Sci. 110(3–4), 207–215 (1998)

    Article  MathSciNet  Google Scholar 

  32. Lingras, P.: Fuzzy-rough and rough-fuzzy serial combinations in neurocomputing. Neurocomput. 36(1–4), 29–44 (2001)

    Article  MATH  Google Scholar 

  33. Mleczko, W.K., Kapuscinski, T., Nowicki, R.K.: Rough deep belief network - application to incomplete handwritten digits pattern classification. In: Proceedings Information and Software Technologies - 21st International Conference, ICIST 2015, Druskininkai, Lithuania, 15–16 October 2015, pp. 400–411 (2015)

    Google Scholar 

  34. Nowak, B.A., Nowicki, R.K., Woźniak, M., Napoli, C.: Multi-class nearest neighbour classifier for incomplete data handling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9119, pp. 469–480. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  35. Nowicki, R.: Rough neuro-fuzzy structures for classification with missing data. IEEE Trans. Syst. Man Cybern. B Cybern. 39(6), 1334–1347 (2009)

    Article  Google Scholar 

  36. Nowicki, R.: On classification with missing data using rough-neuro-fuzzy systems. Int. J. Appl. Math. Comput. Sci. 20(1), 55–67 (2010)

    Article  MATH  Google Scholar 

  37. Nowicki, R.: On combining neuro-fuzzy architectures with the rough set theory to solve classification problems with incomplete data. IEEE Trans. on Knowledge and Data. Engineering 20(9), 1239–1253 (2008)

    Google Scholar 

  38. Nowicki, R., Nowak, B., Starczewski, J., Cpalka, K.: The learning of neuro-fuzzy approximator with fuzzy rough sets in case of missing features. In: International Joint Conference on Neural Networks (IJCNN), 2014, pp. 3759–3766, July 2014

    Google Scholar 

  39. Nowicki, R.K., Nowak, B.A., Wozniak, M.: Rough k-nearest neighbours for classification in the case of missing input data. In: Proceedings of the 9th International Conference on Knowledge, Information and Creativity Support Systems, Limassol, pp. 196–207, November 2014

    Google Scholar 

  40. Patan, K., Patan, M.: Optimal training strategies for locally recurrent neural networks. J. Artif. Intell. Soft Comput. Res. 1(2), 103–114 (2011)

    MATH  Google Scholar 

  41. Pawlak, Z.: Rough classification. Int. J. Man Mach. Stud. 20, 469–485 (1984)

    Article  MATH  Google Scholar 

  42. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer, Dordrecht (1991)

    Book  MATH  Google Scholar 

  43. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Sci. 65(65), 386–408 (1958)

    MathSciNet  Google Scholar 

  44. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the Gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014)

    Article  Google Scholar 

  45. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: A new method for data stream mining based on the misclassification error. IEEE Trans. Neural Networks Learn. Syst. 26(5), 1048–1059 (2015)

    Article  MathSciNet  Google Scholar 

  46. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272–1279 (2013)

    Article  Google Scholar 

  47. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Inf. Sci. 266, 1–15 (2014)

    Article  Google Scholar 

  48. Sartori, N., Salvan, A., Thomaseth, K.: Multiple imputation of missing values in a cancer mortality analysis with estimated exposure dose. Comput. Stat. Data Anal. 49(3), 937–953 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Scherer, R., Rutkowski, L.: Relational equations initializing neuro-fuzzy system. In: Proceeding of the 10th Zittau Fuzzy Colloquium, Zittau, Germany, pp. 18–22 (2002)

    Google Scholar 

  50. Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. In: Rumelhart, D.E., McLelland, J.L., (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1 Fundations, pp. 194–281. MIT (1986)

    Google Scholar 

  51. Starczewski, J., Nowicki, R., Nowak, B.: Genetic fuzzy classifier with fuzzy rough sets for imprecise data. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2014, pp. 1382–1389, July 2014

    Google Scholar 

  52. Tambouratzis, T., Chernikova, D., Pázsit, I.: Pulse shape discrimination of neutrons and gamma rays using kohonen artificial neural networks. J. Artif. Intell. Soft Comput. Res. 3(2), 77–88 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

The project was funded by the Polish National Science Center under decision number DEC-2012/05/B/ST6/03620.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert K. Nowicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mleczko, W.K., Nowicki, R.K., Angryk, R. (2016). Rough Restricted Boltzmann Machine – New Architecture for Incomplete Input Data. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science(), vol 9692. Springer, Cham. https://doi.org/10.1007/978-3-319-39378-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39378-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39377-3

  • Online ISBN: 978-3-319-39378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics