Skip to main content

Intelligent SDN and NFV for 5G HetNet Dynamics

  • Chapter
  • First Online:
  • 1578 Accesses

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

A technology breakthrough happens in mobile communications almost every ten years. 5G, as an emerging example right now, provides not only simply faster speed but also increased capacity, decreased latency and better quality of service (QoS).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.-X. Wang et al., Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)

    Google Scholar 

  2. V. Chandrasekhar, J.G. Andrews, A. Gatherer, Femtocell networks: a survey. IEEE Commun. Mag. 46(9), 59–67 (2008)

    Google Scholar 

  3. F. Rusek et al., Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Sign. Process. Mag. 30(1), 40–60 (2013)

    Google Scholar 

  4. A. Bleicher, Millimeter waves may be the future of 5G phones. Samsung’s millimeter-wave transceiver technology could enable ultrafast mobile broadband by 2020, June 2013

    Google Scholar 

  5. H. Haas, Wireless data from every light bulb. (Aug 2011), http://bit.ly/tedvlc

  6. X. Hong, C.-X. Wang, H.-H. Chen, Y. Zhang, Secondary spectrum access networks. IEEE Veh. Technol. Mag. 4(2), 36–43 (2009)

    Google Scholar 

  7. F. Haider et al., in Spectral Efficiency Analysis of Mobile Femtocell Based Cellular Systems. Proceedings of IEEE ICCT, Jinan, China, Sept 2011, pp. 347–351

    Google Scholar 

  8. P. Agyapong, M. Iwamura, D. Staehle, W. Kiess, A. Benjebbour, Design considerations for a 5G network architecture. IEEE Commun. Mag. 52(11), 65–75 (2014)

    Google Scholar 

  9. C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, A.W. Moore, in OFLOPS: An Open Framework for OpenFlow Switch Evaluation. Passive and Active Measurement, pp. 85–95, Jan 2012

    Google Scholar 

  10. J.H. Jafarian, E. Al-Shaer, Q. Duan, S. Murakami, in Openflow Random Host Mutation: Transparent Moving Target Defense Using Software Defined Networking. Proceedings of the First Workshop on HOT Topics in Software Defined Networks, pp. 127–132, Aug 2012

    Google Scholar 

  11. X. Xu, H. Zhang, X. Dai, Y. Hou, X. Tao, P. Zhang, SDN based next generation mobile network with service slicing and trials. Commun. China 11(2), 65–77 (2014)

    Google Scholar 

  12. J. Sanchez, I.G. Ben Yahia, N. Crespi, T. Rasheed, D. Siracusa, in Softwarized 5G Networks Resiliency with Self-Healing. 5G for Ubiquitous Connectivity (5GU), pp. 229–233, Nov 2014

    Google Scholar 

  13. X. Li, H. Zhang, in Creating Logical Zones FOR Hierarchical Traffic Engineering Optimization in SDN-Empowered 5G. Computing, Networking and Communications (ICNC), pp. 1071–1075, Feb 2015

    Google Scholar 

  14. X. Duan, X. Wang, Authentication handover and privacy protection in 5G hetnets using software-defined networking. Commun. Mag. IEEE 53(4), 28–35 (2015)

    Article  Google Scholar 

  15. S. Kuklinski, Y. Li, K.T. Dinh, in Handover Management in SDN-Based Mobile Networks. Globecom Workshops (GC Wkshps), pp. 194–200, Dec 2014

    Google Scholar 

  16. V. Jungnickel, K. Habel, M. Parker, S. Walker, C. Bock, J. Ferrer Riera, V. Marques, D. Levi, in Software-Defined Open Architecture for Front and Backhaul in 5G Mobile Networks. Transparent Optical Networks (ICTON), pp. 1–4, July 2014

    Google Scholar 

  17. L. Liu, R. Muoz, R. Casellas, T. Tsuritani, R. Martłnez, I. Morita, OpenSlice: an openflow-based control plane for spectrum sliced elastic optical path networks. Opt. Express 21(4), 4194–4204 (2013)

    Article  Google Scholar 

  18. A. Lara, A. Kolasani, B. Ramamurthy, Network innovation using openflow: a survey. Opt. Express Commun. Surv. Tutorials 16(1), 493–512 (2014)

    Article  Google Scholar 

  19. L. Liu, D. Zhang, T. Tsuritani, R. Vilalta, R. Casellas, L. Hong, in First Field Trial of an OpenFlow-Based Unified Control Plane For Multilayer Multi-Granularity Optical Networks. National Fiber Optic Engineers Conference, pp. PDP5D-2, Mar 2012

    Google Scholar 

  20. T. Luo, H.P. Tan, T.Q. Quek, Sensor OpenFlow: enabling software defined wireless sensor networks. Commun. Lett. IEEE 16(11), 1896–1899 (2012)

    Article  Google Scholar 

  21. M. Channegowda, R. Nejabati, M. Rashidi Fard, S. Peng, N. Amaya, G. Zervas, Experimental demonstration of an OpenFlow based software defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed. Opt. Express 21(5), 5487–5498 (2013)

    Google Scholar 

  22. R.Q. Hu, Y. Qian, An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Commun. Mag. 52(5), 94–101, May 2014

    Google Scholar 

  23. M. Palkovic, P. Raghavan, M. Li, A. Dejonghe, L. Van der Perre, F. Catthoor, Future software-defined radio platforms and mapping flows. IEEE Sig. Process Mag. 23(4), 22–33 (2010)

    Article  Google Scholar 

  24. Y. Xu, R.Q. Hu, L. Wei, G. Wu, in QoE-Aware Mobile Association and Resource Allocation Over Wireless Heterogeneous Networks. Global Communications Conference (GLOBECOM), pp. 4695–4701, Dec 2014

    Google Scholar 

  25. I. Chih-Lin, C. Rowell, S. Han, Z. Xu, G. Li, Z. Pan, Toward green and soft: a 5G perspective. IEEE Commun. Mag. 52(2), 66–73 (2014)

    Article  Google Scholar 

  26. R.Q. Hu, Y. Qian, S. Kota, G. Giambene, HetNets—a new paradigm for increasing cellular capacity and coverage. IEEE Trans. Wireless Commun. 18(3), 8–9 (2011)

    Article  Google Scholar 

  27. R.Q. Hu, Y. Qian, Heterogeneous Cellular Networks (Wiley, London, 2013)

    Google Scholar 

  28. R.L.G. Cavalcante, S. Stanczak, M. Schubert, A. Eisenblaetter, U. Tuerke, Toward energy-efficient 5G wireless communications technologies: tools for decoupling the scaling of networks from the growth of operating power. IEEE Sig. Process. Mag. 31(6), 24–34 (2014)

    Article  Google Scholar 

  29. H. Masutani, Y. Nakajima, T. Kinoshita, T. Hibi, H. Takahashi, K. Obana, K. Shimano, M. Fukui, in Requirements and Design of Flexible NFV Network Infrastructure Node Leveraging SDN/OpenFlow. IEEE Optical Network Design and Modeling, pp. 258–263, May 2014

    Google Scholar 

  30. B.A.A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti, A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun. Sur. Tutorials 16(3), 1617–1634 (2014)

    Google Scholar 

  31. X. Duan, X. Wang, Authentication handover and privacy protection in 5G hetnets using software-defined networking. IEEE Commun. Mag. 53(4), 28–35 (2015)

    Article  Google Scholar 

  32. S. Sun, M. Kadoch, L. Gong, B. Rong, Integrating network function virtualization with SDR and SDN for 4G/5G networks. Netw. IEEE 29(3), 54–59 (2015)

    Google Scholar 

  33. S. Sun, B. Rong, Y. Qian, Artificial frequency selective channel for covert CDD-OFDM transmission. J. Secur. Commun. Netw. (2014)

    Google Scholar 

  34. Q. Li, R.Q. Hu, Y. Qian, G. Wu, Cooperative communications for wireless networks: Techniques and applications in LTE-advanced systems. IEEE Trans. Wireless Commun. 19(2), 22–29 (2012)

    Google Scholar 

  35. D. Choudhury, in 5G Wireless and Millimeter Wave Technology Evolution: An Overview. IEEE MTT-S International Microwave Symposium (IMS), pp. 1–4, May 2015

    Google Scholar 

  36. S. Han, I. Chih-Lin, Z. Xu, C. Rowell, Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun. Mag. 53(1), 186–194 (2015)

    Article  Google Scholar 

  37. V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M Ossow, M. Sternad, R. Apelfrojd, T. Svensson, The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Commun. Mag. 52(5), 44–51 (2014)

    Google Scholar 

  38. B. Panzner, W. Zirwas, S. Dierks, M. Lauridsen, P. Mogensen, K. Pajukoski, D. Miao, in Deployment and Implementation Strategies for Massive MIMO in 5G. Globecom Workshops (GC Wkshps), 2014, pp. 346–351, Dec 2014

    Google Scholar 

  39. T.R. Omar, A.E. Kamal, J.M. Chang, in Downlink Spectrum Allocation in 5G HetNets. Wireless Communications and Mobile Computing Conference (IWCMC), pp. 12–17, Aug 2014

    Google Scholar 

  40. D. Liu, L. Wang, Y. Chen, T. Zhang, K. Chai, M. Elkashlan, Distributed energy efficient fair user association in Massive MIMO enabled HetNets. IEEE Commun. Lett. 99, 1–1 (2015)

    Google Scholar 

  41. C.-F. Lai, R.-H. Hwang, H.-C. Chao, M. Hassan, A. Alamri, A buffer-aware HTTP live streaming approach for SDN-enabled 5G wireless networks. Netw. IEEE 29(1), 49–55 (2015)

    Google Scholar 

  42. P. Ameigeiras, J.J. Ramos-Munoz, L. Schumacher, J. Prados-Garzon, J. Navarro-Ortiz, J.M. Lopez-Soler, Link-level access cloud architecture design based on SDN for 5G networks. Netw. IEEE 29(2), 24–31 (2015)

    Article  Google Scholar 

  43. S. Talwar, D. Choudhury, K. Dimou, E. Aryafar, B. Bangerter, K. Stewart, in Enabling Technologies and Architectures for 5G Wireless. IEEE MTT-S International Microwave Symposium (IMS), pp. 1–4, Jun 2014

    Google Scholar 

  44. Y. Mehmood, W. Afzal, F. Ahmad, U. Younas, I. Rashid, I. Mehmood, in Large Scaled Multi-User MIMO System So Called Massive MIMO Systems for Future Wireless Communication Networks. Proceedings of IEEE 11th International Conference on Automation and Computing (ICAC), pp. 1–4, Sept 2013

    Google Scholar 

  45. E. Larsson, O. Edfors, F. Tufvesson, T. Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

    Article  Google Scholar 

  46. X. Chen, R.Q. Hu, Y. Qian, in Distributed Resource and Power Allocation for Device-To-Device Communications Underlaying Cellular Network. Global Communications Conference (GLOBECOM), pp. 4947–4952, Dec 2014

    Google Scholar 

  47. Z. Zhang, R.Q. Hu, Y. Qian, A. Papathanassiou, G. Wu, in D2D Communication Underlay Uplink Cellular Network With Fractional Frequency Reuse. Design of Reliable Communication Networks (DRCN), pp. 247–250, Mar 2015

    Google Scholar 

  48. T. Djerafi, O. Kramer, N. Ghassemi, A.B. Guntupalli, B. Youzkatli-El-Khatib, K. Wu, in Innovative Multilayered Millimetre-Wave Antennas for Multi-Dimensional Scanning and Very Small Footprint Applications. Proceedings of 6th European Conference on Antennas and Propagation (EUCAP), pp. 2583–2587, Mar 2012

    Google Scholar 

  49. J.J. Vegas Olmos, I. Tafur Monroy, in Millimeter-Wave Wireless Links for 5G Mobile Networks. Proceedings of 17th International Conference on Transparent Optical Networks (ICTON), pp. 1–1, July 2015

    Google Scholar 

  50. S. Scott-Hayward, E. Garcia-Palacios, Multimedia resource allocation in mmwave 5G networks. IEEE Commun. Mag. 53(1), 240–247 (2015)

    Article  Google Scholar 

  51. S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, L. Veltri, Information centric networking over SDN and OpenFlow: architectural aspects and experiments on the OFELIA testbed. Comput. Netw. 57(16), 3207–3221 (2013)

    Article  Google Scholar 

  52. A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, in Advanced Study of SDN/OpenFlow Controllers. Proceedings of the 9th Central and Eastern European Software Engineering Conference in Russia, Oct 2013

    Google Scholar 

  53. N. Cvijetic, A. Tanaka, P. Ji, K. Sethuraman, S. Murakami, SDN and OpenFlow for dynamic flex-grid optical access and aggregation networks. Lightwave Technol. J. 32(4), 864–870 (2014)

    Article  Google Scholar 

  54. Open networking foundation. Interoperability Event Technical Paper, vol. 4, 7 Feb 2013

    Google Scholar 

  55. Software-defined networking: a perspective from within a service provider environment. Internet Engineering Task Force, Mar 2014

    Google Scholar 

  56. L.L. Wei, R.Q. Hu, T. He, Y. Qian, in Device-to-Device (D2D) Communications Underlaying MU-MIMO Cellular Networks. Proceedings of IEEE GlOBECOM, pp. 4902–4907, Dec 2013

    Google Scholar 

  57. A. Dixit, F. Hao, S. Mukherjee, T.V. Lakshman, Towards an elastic distributed SDN controller. ACM SIGCOMM Comput. Commun. Rev. 43(4), 7–12 (2013)

    Google Scholar 

  58. P. Bosshart, G. Gibb, H.S. Kim, G. Varghese, N. McKeown, Forwarding metamorphosis: fast programmable match-action processing in hardware for SDN. ACM SIGCOMM Comput. Commun. Rev. 43(4), 99–110 (2013)

    Google Scholar 

  59. M.K. Shin, K.H. Nam, H.J. Kim, in Software-Defined Networking (SDN): A Reference Architecture and Open APIs. ICT Convergence (ICTC), pp. 360–361, Oct 2012

    Google Scholar 

  60. S. Schmid, J. Suomela, in Exploiting Locality in Distributed SDN Control. Proceedings of the Second ACM SIGCOMM Workshop, pp. 121–126, Aug 2013

    Google Scholar 

  61. S. Scott-Hayward, G. O’Callaghan, S. Sezer, in SDN Security: A Survey. Future Networks and Services, pp. 1–7, Nov 2013

    Google Scholar 

  62. White Paper on “Network Functions Virtualisation”. http://portal.etsi.org/NFV/NFVWhitePaper.pdf, 13 Oct 2014

  63. Software-Defined Networking: The New Norm for Networks. https://www.opennetworking.org/images/stories/downloads/sdnresources/white-papers/wp-sdn-newnorm.pdf, 13 Oct 2014

  64. J. Batalle, J. Ferrer Riera, E. Escalona, J.A. Garcia-Espin, in On the Implementation of NFV Over an OpenFlow Infrastructure: Routing Function Virtualization. IEEE SDN4FNS, pp. 1–6, Nov 2013

    Google Scholar 

  65. H. Masutani, NTT Network Innovation Labs. in Yokosuka, Japan. Requirements and Design of Flexible NFV Network Infrastructure Node Leveraging SDN/OpenFlow. IEEE ONDM, pp. 258–263, May 2014

    Google Scholar 

  66. M. Palkovic, P. Raghavan, M. Li, A. Dejonghe, A. Dejonghe, L. Van der Perre, F. Catthoor, Future software-defined radio platforms and mapping flows. IEEE Sig. Process Mag. 27, 22–33 (2010)

    Google Scholar 

  67. M. Sadiku, C. Akujuobi, Software-defined radio: a brief overview. IEEE Potentials 23(4), 14–15 (2004)

    Article  Google Scholar 

  68. B.A.A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti, A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun. Surv. Tutorials 16(3), 1617–1634 (2014)

    Google Scholar 

  69. S. Sezer, S. Scott-Hayward, P.K. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen, M. Miller, N. Rao, Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Commun. Mag. 51(7), 36–43 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Rong .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Rong, B., Qiu, X., Kadoch, M., Sun, S., Li, W. (2016). Intelligent SDN and NFV for 5G HetNet Dynamics. In: 5G Heterogeneous Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-39372-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39372-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39371-1

  • Online ISBN: 978-3-319-39372-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics