Skip to main content

Nanoscale Pattern Transfer by Deposition

  • Chapter
  • First Online:
  • 3692 Accesses

Abstract

Although subtractive etching is the most used pattern transfer process, not all materials can be etched either by wet chemical or plasma. Metals in particular are difficult to etch by dry etching process. Though wet acids can etch metals, the isotropic nature of wet etch means it is difficult to obtain high resolution as well as high aspect ratio metallic structures. Pure physical sputtering such as the ion milling introduced in Chap. 7 is too slow and has stringent requirements on the mask. Therefore, etching alone cannot perform all the pattern transfer tasks. The other option is to transfer resist patterns by deposition. It is an additive process, i.e. adding materials through the resist pattern openings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Elshabini-Riad, A.A.R., and F.D. Barlow III. 1997. Thin film technology handbook. New York: McGraw-Hill.

    Google Scholar 

  2. Chambers, A., R.K. Fitch, and B.S. Halliday. 1998. Basic vacuum technology, 2nd ed. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  3. Chapman, B. 1980. Glow discharge processes. New York: Wiley.

    Google Scholar 

  4. Rossnagel, S.M. 1999. Sputter deposition for semiconductor manufacturing. IBM Journal of Research and Development 43(1/2): 163.

    Article  Google Scholar 

  5. Hatzakis, M., B.J. Canavello, and I.M. Shaw. 1980. Single-step optical lift-off process. IBM Journal of Research and Development 24(4): 452–460.

    Article  Google Scholar 

  6. Beaumont, S.P., et al. 1981. Sub-20-nm-wide metal lines by electron-beam exposure of thin poly(methyl methacrylate) films and liftoff. Applied Physics Letters 38(6): 436–439.

    Article  Google Scholar 

  7. Chou, S.Y., et al. 1997. Sub-10 nm imprint lithography and applications. Journal of Vacuum Science and Technology B15(6): 2897.

    Article  Google Scholar 

  8. Cui, Z. 2006. Focused ion beam technology. In Micro-nanofabrication technologies and applications. Springer.

    Google Scholar 

  9. Chen, Y., K. Peng, and Z. Cui. 2004. A lift-off process for high resolution patterns using PMMA/LOR resist stack. Microelectronic Engineering 73/74: 278.

    Article  Google Scholar 

  10. Xia, X., et al. 2007. Fabrication of near-infrared and optical meta-materials on insulating substrates by lift-off using PMMA/Al stack. Microelectronic Engineering 84(5–8): 1144–1147.

    Article  Google Scholar 

  11. Radulescu, F., et al. 2002. Introduction of complete sputtering metallization in conjunction with CO2 snow lift-off for high volume GaAs manufacturing. In Proceedings of the GaAs MANTECH conference.

    Google Scholar 

  12. Voigt, A., et al. 2005. A single layer negative tone lift-off photo resist for patterning a magnetron sputtered Ti/Pt/Au contact system and for solder bumps. Microelectronic Engineering 78–79: 503–508.

    Article  Google Scholar 

  13. Yang, H., et al. 2008. Electron beam lithography of HSQ/PMMA bilayer resists for negative tone lift-off process. Microelectronic Engineering 85(5–6): 814–817.

    Google Scholar 

  14. Romankiw, L.T., L.M. Croll, and M. Hatzakis. 1970. Batch fabricated thin film magnetic recording head. IEEE Transactions on Magnetics 6(4): 729.

    Google Scholar 

  15. Romankiw, L.T., and E.J.M. O'Sullivan. 1997. Plating techniques. In Handbook of micolithography, micromachining and microfabrication, ed. P. Rai-choudhury. Bellingham, WA: SPIE Optical Engineering Press & IEE.

    Google Scholar 

  16. Jiang, M. 2004. Processing considerations for CMP on thin-film head wafers. Solid State Technology, September.

    Google Scholar 

  17. Jackson, R.L., et al. 1998. Processing and integration of copper interconnects. Solid State Technology, March.

    Google Scholar 

  18. Becker, E.W., et al. 1986. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moudling (LIGA process). Microelectronic Engineering 4: 35.

    Article  Google Scholar 

  19. Cui, Z., and R.A. Lawes. 1997. Low cost fabrication of micromechanical systems. Microelectronic Engineering 35: 389.

    Article  Google Scholar 

  20. Cui, Z., et al. 2007. High sensitive magnetically actuated micromirrors for magnetic field measurement. Sensors and Actuators A: Physical 138(1): 145–150.

    Article  Google Scholar 

  21. Attwood, D.T. 2000. Soft X-rays and extreme ultraviolet radiation. Cambridge: Cambridge University Press.

    Google Scholar 

  22. Chao, W., et al. 2005. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435: 1210.

    Article  Google Scholar 

  23. Simon, G., et al. 1997. Electroplating: An alternative transfer technology in the 20 nm range. Microelectronic Engineering 35: 51–54.

    Article  Google Scholar 

  24. Anderson, E.H., et al. 2000. Nanofabrication and diffractive optics for high-resolution X-ray applications. Journal of Vacuum Science and Technology B18: 2970.

    Article  Google Scholar 

  25. Haatainen, T., et al. 2006. Nickel stamp fabrication using step & stamp imprint lithography. Microelectronic Engineering 83: 948–954.

    Article  Google Scholar 

  26. Wolf, S. 2004. Introduction to dual-damascene interconnect processes. Silicon Processing for the VLSI Era 4: 674–679.

    Google Scholar 

  27. Luethi, R., et al. 1999. Parallel nanodevice fabrication using a combination of shadow mask and scanning probe methods. Applied Physics Letters 75(9): 1314.

    Article  Google Scholar 

  28. Brugger, J., et al. 2000. Resistless pattering of sub-micron structures by evaporation through nanostencils. Microelectronic Engineering 53: 403.

    Article  Google Scholar 

  29. Kim, G.M., M.A.F. Van den Boogaart, and J. Brugger. 2003. Fabrication and application of a full wafer size micro/nanostencil for multiple length scale surface patterning. Microelectronic Engineering 67–68: 609.

    Article  Google Scholar 

  30. Arcamone, J., et al. 2007. Dry etching for the correction of gap-induced blurring and improved pattern resolution in nanostencil lithography. Journal of Micro/Nanolithography, MEMS, and MOEMS 6(1): 013005.

    Article  Google Scholar 

  31. Lishchynska, M., et al. 2007. Predicting mask distortion, clogging and pattern transfer for stencil lithography. Microelectronic Engineering 84: 42–53.

    Article  Google Scholar 

  32. Cui, Z. 2016. Printed electronics: Materials, technologies and applications. New York: Wiley.

    Book  Google Scholar 

  33. Organic and printed electronics: Applications, technologies and suppliers, 6th ed. Organic Electronics Association (OE-A), 2015.

    Google Scholar 

  34. Optomec Inc. http://www.optomec.com/.

  35. Park, J.-U., et al. 2007. High-resolution electrohydrodynamic jet printing. Nature Materials 6: 782–789.

    Article  Google Scholar 

  36. Mishra, S., et al. 2010. High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet. Journal of Micromechanics and Microengineering 20: 095026.

    Article  Google Scholar 

  37. Rohner, P., and J. Schneider. 2015. Electrohydrodynamic printing of high aspect ratio metal transparent electrodes. In The 3rd Swiss conference on printed electronics and functional materials (Swiss e-Print).

    Google Scholar 

  38. SIJTechnology Inc. http://www.sijtechnology.com/en/.

  39. Murata, K., and K. Masuda. 2011. Super Inkjet Printer Technology and its properties. Convertech & e-Print (July/August): 74–78.

    Google Scholar 

  40. Takano, K., T. Kawabata, and C.-F. Hsieh. 2010. Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer. Applied Physics Express 3: 016701.

    Article  Google Scholar 

  41. Xu, W., J. Zhao, and Z. Cui. 2014. Flexible logic circuits based on top-gate thin film transistors with printed semiconductor carbon nanotubes and top electrodes. Nanoscale 6: 14891–14897.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cui, Z. (2017). Nanoscale Pattern Transfer by Deposition. In: Nanofabrication. Springer, Cham. https://doi.org/10.1007/978-3-319-39361-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39361-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39359-9

  • Online ISBN: 978-3-319-39361-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics