Skip to main content

Superconductivity in Layered Systems of Dirac Electrons

  • Chapter
  • First Online:
Basic Physics of Functionalized Graphite

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 244))

  • 1206 Accesses

Abstract

Dirac electrons have been discovered in many advanced materials including, among others, graphene, cuprates, pnictides and rare-earth dichalchogenides. These materials are either two-dimensional, such as graphene or exhibit a layered structure formed by planes where the most relevant physics occurs. Interestingly many of them undergo a transition to a superconducting phase, under appropriate conditions. However, the kinematical properties of Dirac electrons, which imply the absence of a Fermi surface at zero doping, rules out the traditional, phonon-mediated BCS mechanism of superconductivity. In this chapter, we describe a theoretical study of the superconducting properties of layered systems of Dirac electrons, assuming the existence of some mechanism behind it. We analyze in detail the phase diagram identifying quantum critical points, the effects of temperature, magnetic field, chemical potential (doping), number of layers, as well as the interplay of the SC with an excitonic interaction. The results unequivocally indicate that a novel mechanism, other than the traditional BCS, is required to explain the superconductivity of Dirac electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.O. Wehling, A.M. Black-Schaffer, A.V. Balatsky, Adv. Phys. 76, 1 (2014)

    Article  Google Scholar 

  2. E.V. Castro et al., An Introduction to the Physics of Graphene Layers, in Strongly Correlated Systems, Coherence and Entanglement (World Scientific, Singapore, 2007)

    Google Scholar 

  3. A.H. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009)

    Google Scholar 

  4. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    Article  Google Scholar 

  5. E.C. Marino, L.H.C.M. Nunes, Nucl. Phys. B 741, 404 (2006)

    Article  Google Scholar 

  6. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966); P.C. Hohenberg, Phys. Rev. 158, 383 (1967); S. Coleman. Commun. Math. Phys. 31, 259 (1973)

    Google Scholar 

  7. A.H. Castro Neto, Phys. Rev. Lett. 86, 4382 (2001)

    Google Scholar 

  8. E.C. Marino, M.J. Martins, Phys. Rev. D 33, 3121 (1996)

    Article  Google Scholar 

  9. E. Witten, Nucl. Phys. B 145, 110 (1978)

    Article  Google Scholar 

  10. E. Babaev, Phys. Lett. B 497, 323 (2001)

    Article  Google Scholar 

  11. D.V. Khveshchenko, H. Leal, Nucl. Phys. B 687, 323 (2004)

    Article  Google Scholar 

  12. V.L. Berezinskii, Zh. Eksp. Teor. Fiz. 59, 907 (1970); J. Kosterlitz, D. Thouless, J. Phys. C 6, 118 (1973)

    Google Scholar 

  13. V.M. Loktev, R.M. Quick, S.G. Sharapov, Phys. Rep. 349, 1 (2001)

    Article  Google Scholar 

  14. L.H.C.M. Nunes, A.L. Mota, E.C. Marino, Solid State Commun. 152, 2082 (2012)

    Article  Google Scholar 

  15. Y. Kopolevich, J. Low Temp. Phys. 119, 691 (2000); Y. Kopelevich et al., Phys. Solid State 41, 1959 (1999) (Fizika Tverd. Tela (St. Petersburg) 41, 2135 (1999))

    Google Scholar 

  16. P. Esquinazi et al., Phys. Rev. B 78, 134516 (2008)

    Article  Google Scholar 

  17. R.K. Kremer, J.S. Kim, A. Simon, Carbon Based Superconductors, in High Tc Superconductors and Related Transition Metal Oxides (Springer, Berlin, 2007)

    Google Scholar 

  18. S.S. Pershoguba, V.M. Yakovenko, Phys. Rev. B 82, 205408 (2010)

    Article  Google Scholar 

  19. L.H.C.M. Nunes, R.L.S. Farias, E.C. Marino, Phys. Lett. A 376, 779 (2012)

    Article  Google Scholar 

  20. D.V. Khveshchenko, Nucl. Phys. B 687, 323 (2004). Phys. Rev. Lett. 87, 246802 (2001)

    Google Scholar 

  21. C. Ratti, W. Weise, Phys. Rev. D 70, 054013 (2004)

    Article  Google Scholar 

  22. B. Uchoa, A.H. Castro Neto, Phys. Rev. Lett. 98, 146801 (2007)

    Google Scholar 

  23. K. Fukushima, K. Iida, Phys. Rev. D 76, 054004 (2007)

    Article  Google Scholar 

  24. L.-K. Lim et al., Eur. Phys. Lett. 88, 36001 (2009)

    Article  Google Scholar 

  25. L.H.C.M. Nunes, E.C. Marino, Phys. B 378–380, 704 (2006)

    Article  Google Scholar 

  26. Y. Kamihara, et al., J. Am. Chem. Soc. 130, 3296 (2008)

    Google Scholar 

  27. M. Rotter, M. Tegel, D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008)

    Article  Google Scholar 

  28. M.G. Alford et al., Rev. Mod. Phys. 80, 1455 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo C. Marino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marino, E.C., Nunes, L.H.C.M. (2016). Superconductivity in Layered Systems of Dirac Electrons. In: Esquinazi, P. (eds) Basic Physics of Functionalized Graphite. Springer Series in Materials Science, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-319-39355-1_5

Download citation

Publish with us

Policies and ethics