Skip to main content

Phase Transitions Induced by a Magnetic Field in Graphite

  • Chapter
  • First Online:
Basic Physics of Functionalized Graphite

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 244))

Abstract

The subject of this chapter is the the so-called quantum limit of a three-dimensional metal, which is attained at a sufficiently strong magnetic field with only a few occupied Landau levels. Graphite, which has a small Fermi surface, is an ideal candidate to explore this limit. A magnetic field of 7.5 T confines the carriers to their lowest Zeeman-split Landau level. In the early 1980s, a sharp increase in the in-plane magneto-resistance of graphite at high magnetic field (typically \(B>\)20 T) was discovered and attributed to a phase transition induced by the magnetic field. Numerous studies followed, and this phase transition is generally believed to be a density-wave instability triggered by the one-dimensional nature of the electronic spectrum and the enhancement of the electron–electron interactions in the quantum limit. Recent transport measurements up to 80 T revealed that not one but two successive field-induced instabilities are present. After a brief description of the quantum limit, we review the rich and complex field phase diagram of graphite as a function of temperature and magnetic field. We discuss possible electronic states associated with these instabilities and end the chapter with a study of the quantum limit in other dilute metals, such as bismuth or lightly-doped semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Schoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984)

    Book  Google Scholar 

  2. J.M. Ziman, Theory of Solids (Cambridge University Press, Cambridge, 1972)

    Book  Google Scholar 

  3. T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2004)

    Google Scholar 

  4. D. Yoshioka, The Quantum Hall Effect (Springer, New York, 2001)

    Google Scholar 

  5. B.I. Halperin, Jap. J. Appl. Phys. 26, 1913 (1987)

    Article  Google Scholar 

  6. J.C. Slonczewski, P.R. Weiss, Phys. Rev. 80, 272279 (1979)

    Google Scholar 

  7. J.W. McClure, Phys. Rev. 108, 612 (1957)

    Article  Google Scholar 

  8. J.M. Schneider, Electronic Properties of Graphite (Physics Grenoble, Universite Joseph-Fourier) (2010)

    Google Scholar 

  9. S. Tanuma et al., in Physics in High Magnetic Fields, ed. by S. Chikazumi and N. Miura (Springer, Berlin, 1981)

    Google Scholar 

  10. H. Yaguchi, Y. Iye, T. Takamasu, N. Miura, Phys. B 184, 332 (1993)

    Article  Google Scholar 

  11. H. Yaguchi, J. Singleton, J. Phys. Condens. Matter 21, 344207 (2009)

    Article  Google Scholar 

  12. F. Arnold et al., http://xxx.lanl.gov/pdf/1411.3323.pdf

  13. K. Akiba, A. Miyake, H. Yaguchi, A. Matsuo, K. Kindo, M. Tokunaga, J. Phys. Soc. Jpn. 84, 054709-1-6 (2015)

    Google Scholar 

  14. H. Yaguchi, J. Singleton, Phys. Rev. Lett. 81, 5193 (1998)

    Article  Google Scholar 

  15. D. Yoshioka, H. Fukuyama, J. Phys. Soc. Jpn. 50, 725 (1981)

    Article  Google Scholar 

  16. Y. Takada, H. Goto, J. Phys. Condens. Matter 10, (1998)

    Google Scholar 

  17. Y. Iye et al., Phys. Rev. B 25, 5478 (1982)

    Article  Google Scholar 

  18. Y. Iye, P.M. Berglund, L.E. McNeil, Solid State Commun. 52, 975 (1984)

    Article  Google Scholar 

  19. S. Uji, J.S. Brooks, Y. Iye, Phys. B 299, 246 (1998)

    Google Scholar 

  20. Y. Iye, G. Dresselhaus, Phys. Rev. Lett. 54, 1182 (1985)

    Article  Google Scholar 

  21. H. Yaguchi, J. Singleton, T. Iwata, Phys. B 298, 546 (2001)

    Article  Google Scholar 

  22. H. Yaguchi et al., J. Phys. Soc. Jpn. 68, 181 (1999)

    Google Scholar 

  23. Z. Zhu et al., Nat. Phys. 6, 26 (2010)

    Article  Google Scholar 

  24. B. Fauqué et al., Phys. Rev. Lett. 106, 246405 (2011)

    Article  Google Scholar 

  25. C. Hess, Properties and Applications of Thermoelectric Materials - II (Springer, New York, 2012)

    Google Scholar 

  26. K. Behnia, J. Phys. Condens. Matter 21, 113101 (2009)

    Article  Google Scholar 

  27. D.L. Bergman, V. Oganesyan, Phys. Rev. Lett. 104, 066601 (2010)

    Article  Google Scholar 

  28. B. Fauqué et al., Phys. Rev. Lett. 110, 266601 (2013)

    Article  Google Scholar 

  29. Y. Kopelevich et al., Phys. Rev. Lett. 103, 116802 (2009)

    Article  Google Scholar 

  30. Ono et al., J. Phys. Soc. Jpn. 14(498) (1976)

    Google Scholar 

  31. Y. Kopelevich et al., Phys. Lett. A 374 (2010)

    Google Scholar 

  32. J. Béard et al, Eur. Phys. J. Appl. Phys. 59, 30201 (2012)

    Google Scholar 

  33. V. Celli, N.D. Mermin, Phys. Rev. 1 40, A 839 (1965)

    Google Scholar 

  34. H. Fukuyama, Solid State Commun. 26, 783 (1978)

    Article  Google Scholar 

  35. Z. Tezanovic et al., Phys. Rev. B 36, 488 (1987)

    Google Scholar 

  36. B.I. Halperin, Japanese J. Appl. Phys. 26 (1987)

    Google Scholar 

  37. V.M. Yakovenko et al., Phys. Rev. B 47, 8851 (1993)

    Article  Google Scholar 

  38. W.G. Kleppmann, R.J. Elliott, J. Phys. C Solid State 8, 2729 (1975)

    Article  Google Scholar 

  39. A.A. Abrikosov, J. Low Temp. Phys. 2(37), 175 (1970)

    Article  Google Scholar 

  40. C. Biagini et al., Europhys. Lett. 55, 383 (2001)

    Article  Google Scholar 

  41. M. Rasolt, Z. Tesanovic, Rev. Mod. Phys. 64, 709 (1992)

    Article  Google Scholar 

  42. D. Yoshioka, H. Fukuyama, J. Phys. Soc. Jpn. 50, 725 (1981)

    Article  Google Scholar 

  43. K. Takhashi, Y. Takada, Phyisca C 201, 384 (1994)

    Google Scholar 

  44. M. Dressel et al., Phys. Rev. B 71, 075104 (2005)

    Article  Google Scholar 

  45. K.S. Novoselov et al., Nat. Phys. 2, 177 (2006)

    Article  Google Scholar 

  46. A. Kumar et al., Phys. Rev. Lett. 107, 126806 (2011)

    Article  Google Scholar 

  47. B.A. Bernevig et al., Phys. Rev. Lett. 99, 146804 (2007)

    Article  Google Scholar 

  48. F.J. Burnell, B.A. Bernevig, D.P. Arovas, Phys. Rev. B 79, 155310 (2009)

    Article  Google Scholar 

  49. L. Balents, M.P.A. Fisher, Phys. Rev. Lett. 76, 2782 (1996)

    Article  Google Scholar 

  50. D.P. Druist et al., Phys. Rev. Lett. 80, 365 (1998)

    Google Scholar 

  51. Z. Zhu et al., Phys. Rev. B 84, 115137 (2011)

    Article  Google Scholar 

  52. K. Behnia et al., Science 317, 1729 (2007)

    Article  Google Scholar 

  53. B. Fauqué et al., New J. Phys. 11 113012 (2009)

    Google Scholar 

  54. Z. Zhu et al., PNAS 109(37), 14813 (2012)

    Article  Google Scholar 

  55. L. Li et al., Science 321, 547 (2008)

    Article  Google Scholar 

  56. J. Alicea, L. Balents et al., Phys. Rev. B 79, 241101(R) (2009)

    Article  Google Scholar 

  57. Zengwei Zhu et al., Nat. Phys. 8, 89 (2011)

    Article  Google Scholar 

  58. A. Collaudin et al., Phys. Rev. X 5, 021022 (2015)

    Google Scholar 

  59. P.L. Kapitza, Proc. R. Soc. A 119, 358443 (1928)

    Article  Google Scholar 

  60. D. Abanin et al., Phys. Rev. B 82, 035428 (2010)

    Article  Google Scholar 

  61. N. Miura et al., Phys. Rev. Lett. 49, 1339 (1982)

    Article  Google Scholar 

  62. K. Hiruma et al., J. Phys. Soc. Jpn. 52, 2118 (1983)

    Article  Google Scholar 

  63. E.A Taft, H.R Philipp, Phys. Rev. A 138, 197 (1965)

    Google Scholar 

  64. N. Butch et al., Phys. Rev. B 10, 241301(R) (2010)

    Article  Google Scholar 

  65. B. Fauqué et al., Phys. Rev. B 87, 035133 (2013)

    Article  Google Scholar 

  66. T. Liang et al., Nat. Commun. 4, 2696 (2013)

    Google Scholar 

  67. M. Shayegan, V.J. Goldman, D. Drew, Phys. Rev. B 38, 5585 (1988)

    Google Scholar 

  68. J. Oswald et al., Phys. Rev. B 40, 3032 (1989)

    Article  Google Scholar 

  69. S. Ishida, E. Otsuka, J. Phys. Soc. Jpn. 42, 542 (1977)

    Article  Google Scholar 

  70. R.W. Keyes, R.J. Sladek, J. Phys. Chem. Solids 1(8), 515 (1958)

    Google Scholar 

  71. Y. Yafet, R.W. Keyes, E.N. Adams, J. Phys. Chem. Solids 1,13, 71956 (1958)

    Google Scholar 

  72. N.B Brandt, S.M Chudinov, Y.G. Ponomarev, Semimetals Graphite and its Compounds, Modern Problems in Condensed Matter Sciences (North-Holland Physics Publishing, Amsterdam, 1988)

    Google Scholar 

  73. Z. Zhu et al., http://lanl.arxiv.org/pdf/1508.03645v1

Download references

Acknowledgments

It is our pleasure to thank our colleagues from the high magnetic facility laboratory at LNCMI-Toulouse and Grenoble: Stephane Kramers, David LeBoeuf, Marc Nardone, Cyril Proust, Baptiste Vignolles and Gabriel Seyfarth without whom all these experiments could not have been carried out. We also thank Jason Alicea, Duncan Maude, Yasutami Takada and Zengwei Zhu for stimulating discussions. This work was supported by the Agence Nationale de la Recherche, as a part of the SUPERFIELD and QUANTUMLIMIT projects, by a grant attributed by the Ile-de-France regional council and by EuroMagNET II under the EU contract number 228043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Fauqué .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fauqué, B., Behnia, K. (2016). Phase Transitions Induced by a Magnetic Field in Graphite. In: Esquinazi, P. (eds) Basic Physics of Functionalized Graphite. Springer Series in Materials Science, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-319-39355-1_4

Download citation

Publish with us

Policies and ethics