Skip to main content

Touchless Disambiguation Techniques for Wearable Augmented Reality Systems

  • Conference paper
  • First Online:
  • 1772 Accesses

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 55))

Abstract

The paper concerns target disambiguation techniques in egocentric vision for wearable augmented reality systems. In particular, the paper focuses on two of the most commonly used selection techniques in immersive environments: Depth Ray and SQUAD. The design and implementation of such techniques in a touchless augmented reality interface, together with the results of a preliminary usability evaluation carried out with inexpert users, are discussed. The user study provides insights on users’ preferences when dealing with the precision-velocity trade-off in selection tasks, carried out in an augmented reality scenario.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Starner, T.: Project glass: an extension of the self. IEEE Pervasive Comput. 12(2), 14–16 (2013)

    Article  Google Scholar 

  2. Steed, A.: Towards a general model for selection in virtual environments. In: IEEE Symposium on 3D User Interfaces, 2006, 3DUI 2006, pp. 103–110. IEEE (2006)

    Google Scholar 

  3. Steed, A., Parker, C.: 3D selection strategies for head tracked and non-head tracked operation of spatially immersive displays. In: 8th International Immersive Projection Technology Workshop, pp. 13–14 (2004)

    Google Scholar 

  4. Liang, J., Green, M.: JDCAD: a highly interactive 3D modeling system. Comput. Graph. 18(4), 499–506 (1994)

    Article  Google Scholar 

  5. Vanacken, L., Grossman, T., Coninx, K.: Exploring the effects of environment density and target visibility on object selection in 3D virtual environments. In: IEEE Symposium on 3D User Interfaces, 2007, 3DUI’07. IEEE (2007)

    Google Scholar 

  6. Grossman, T., Balakrishnan, R.: The design and evaluation of selection techniques for 3D volumetric displays. In: Proceedings of the 19th Annual ACM symposium on User Interface Software and Technology. pp. 3–12. ACM (2006)

    Google Scholar 

  7. Argelaguet, F., Andujar, C.: A survey of 3D object selection techniques for virtual environments. Comput. Graph. 37(3), 121–136 (2013)

    Article  Google Scholar 

  8. Hinckley, K., Pausch, R., Goble, J.C., Kassell, N.F.: A survey of design issues in spatial input. In: Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology, pp. 213–222. ACM (1994)

    Google Scholar 

  9. Kopper, R., Bacim, F., Bowman, D., et al.: Rapid and accurate 3D selection by progressive refinement. In: 2011 IEEE Symposium on 3D User Interfaces (3DUI), pp. 67–74. IEEE (2011)

    Google Scholar 

  10. Cashion, J., Wingrave, C., LaViola Jr., J.J.: Dense and dynamic 3D selection for game-based virtual environments. IEEE Transa. Visual. Comput. Graph. 18(4), 634–642 (2012)

    Article  Google Scholar 

  11. Amato, F., Mazzeo, A., Moscato, V., Picariello, A.: Exploiting cloud technologies and context information for recommending touristic paths. Stud. Comput. Intell. 511, 281–287 (2014)

    Article  Google Scholar 

  12. Amato, F., Chianese, A., Moscato, V., Picariello, A., Sperli, G.: Snops: a smart environment for cultural heritage applications. In: Proceedings of the Twelfth International Workshop on Web Information and Data Management, WIDM ’12, pp. 49–56. ACM, New York, NY, USA (2012). http://doi.acm.org/10.1145/2389936.2389947

  13. Chianese, A., Piccialli, F.: Improving user experience of cultural environment through IoT: the beauty or the truth case study. Smart Innovation, Syst. Technol. 40, 11–20 (2015)

    Article  Google Scholar 

  14. Chianese, A., Piccialli, F., Valente, I.: Smart environments and cultural heritage: a novel approach to create intelligent cultural spaces. J. Location Based Serv. 9(3), 209–234 (2015)

    Article  Google Scholar 

  15. Meta spaceglasses: https://www.metavision.com/

  16. Caggianese, G., Neroni, P., Gallo, L.: Natural interaction and wearable augmented reality for the enjoyment of the cultural heritage in outdoor conditions. In: De Paolis, L.T., Mongelli, A. (eds.) Augmented and Virtual Reality, Lecture Notes in Computer Science, pp. 267–282. Springer International Publishing (2014)

    Google Scholar 

  17. Mine, M.R.: Virtual environment interaction techniques. Technical report, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (1995)

    Google Scholar 

  18. Gallo, L., Minutolo, A.: Design and comparative evaluation of smoothed pointing: a velocity-oriented remote pointing enhancement technique. Int. J. Hum. Comput. Stud. 70(4), 287–300 (2012)

    Article  Google Scholar 

  19. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 22 (1932)

    Google Scholar 

  20. Uebersax, J.S.: Likert scales: Dispelling the confusion. http://www.john-uebersax.com/stat/likert.htm

  21. Brooke, J.: SUS: a quick and dirty usability scale. In: Jordan, P.W., Weerdmeester, B., Thomas, A., Mclelland, I.L. (eds.) Usability Evaluation in Industry. Taylor and Francis (1996)

    Google Scholar 

  22. Boring, S., Jurmu, M., Butz, A.: Scroll, tilt or move it: using mobile phones to continuously control pointers on large public displays. In: Proceedings of the 21st Annual Conference of the Australian Computer-Human Interaction Special Interest Group: Design: Open 24/7, OZCHI ’09, pp. 161–168. ACM, New York, NY, USA (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Caggianese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Caggianese, G., Gallo, L., Neroni, P. (2016). Touchless Disambiguation Techniques for Wearable Augmented Reality Systems. In: Pietro, G., Gallo, L., Howlett, R., Jain, L. (eds) Intelligent Interactive Multimedia Systems and Services 2016. Smart Innovation, Systems and Technologies, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-39345-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39345-2_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39344-5

  • Online ISBN: 978-3-319-39345-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics