Skip to main content

The Effect of Receding Horizon Pure Pursuit Control on Passenger Comfort in Autonomous Vehicles

  • Conference paper
  • First Online:
Intelligent Interactive Multimedia Systems and Services 2016

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 55))

Abstract

Passengers in autonomous vehicles are prone to motion sickness. Receding horizon control of pure pursuit tracking algorithms has been shown to improve path tracking performance. In this paper we present a numerical study on the effect of the receding horizon pure pursuit controller on passenger comfort. Three standard cases at the different speeds are utilized to compare the effect of traditional and receding horizon pure pursuit control on passenger comfort. The results show improvements in passenger comfort at higher speeds using receding horizon control and that path continuity is more influential that optimal tracking control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris, S., Humphrey, A., Pickering, A., Tipping, S., Templeton, I., Hurn, J.: National Travel Survey 2013. The Department for Transport, NatCen Social Research, London, UK (2013)

    Google Scholar 

  2. Santos, A., McGuckin, N., Nakamoto, H.Y., Gray, D., Liss, S.: Summary of Travel Trends: 2009 National Household Travel (NTS) Survery. U.S. Department of Transportation, New Jersey, SE, Washington, DC (2011)

    Google Scholar 

  3. Bureau of Transportation Statistics, Household Travel Survey Report: Sydney 2012/13. Transport for NSW, Sydney, NSW (2013)

    Google Scholar 

  4. Waldrop, M.M.: Autonomous vehicles: no drivers required. Nature 518, 20 (2015)

    Article  Google Scholar 

  5. Laurgeau, C.: Intelligent vehicle potential and benefits. In: Eskandarian, A. (ed.) Handbook of Intelligent Vehicles, pp. 1537–1551. Springer, London (2012)

    Google Scholar 

  6. Fagnant, D.J., Kockelman, K.M.: The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transp. Res. Part C: Emerg. Technol. 40(3), 1–13 (2014)

    Google Scholar 

  7. Bureau of Infrastructure Transport and Regional Economics (BITRE), Road Deaths Australia, Canberra ACT2014

    Google Scholar 

  8. Bureau of Transportation Statistics, National Transportation Statistics, U.S. Department of Transportation 2014

    Google Scholar 

  9. Saleh, L., Chevrel, P., Claveau, F., Lafay, J.F., Mars, F.: Shared steering control between a driver and an automation: stability in the presence of driver behavior uncertainty. IEEE Trans. Intell. Transp. Syst. 14, 974–983 (2013)

    Article  Google Scholar 

  10. He, J., McCarley, J.S., Kramer, A.F.: Lane keeping under cognitive load: performance changes and mechanisms. Human Factors: J. Human Factors Ergon. Soc. 56, 414–426 (2014)

    Google Scholar 

  11. Lee, J.D.: Fifty years of driving safety research. Human Factors: J. Human Factors Ergon. Soc. 50, 521–528 (2008)

    Google Scholar 

  12. Gonzalez, D., Perez, J., Lattarulo, R., Milanes, V., Nashashibi, F.: Continuous curvature planning with obstacle avoidance capabilities in urban scenarios. In: 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), pp. 1430–1435 (2014)

    Google Scholar 

  13. Elbanhawi, M., Simic, M., Jazar, R.: Improved manoeuvring of autonomous passenger vehicles: simulations and field results. J. Vib. Control (2015)

    Google Scholar 

  14. Elbanhawi, M., Simic, M., Jazar, R.: Randomized bidirectional B-Spline parameterization motion planning. IEEE Trans. Intell. Transp. Syst. 1–1 (2015)

    Google Scholar 

  15. Craig, C.R.: Implementation of the pure pursuit path tracking algorithm. Carnegie Mellon University, Pittsburgh, Pennsylvania, USA CMU-R1-TR-92-01 (1992)

    Google Scholar 

  16. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J. et al.: Stanley: the robot that won the DARPA grand challenge. In: Buehler, M., Iagnemma, K. Singh, S. (eds.) The 2005 DARPA Grand Challenge, vol. 36, pp. 1–43. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  17. Cheein, F.A., Scaglia, G.: Trajectory tracking controller design for unmanned vehicles: a new methodology. J. Field Robot. 31, 861–887 (2014)

    Article  Google Scholar 

  18. Serrano, M.E., Scaglia, G.J.E., Cheein, F.A., Mut, V., Ortiz, O.A.: Trajectory-tracking controller design with constraints in the control signals: a case study in mobile robots. Robotica FirstView 1–18 (2014)

    Google Scholar 

  19. Corke, P.: Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer (2011)

    Google Scholar 

  20. Snider, J.M.: Automatic steering methods for autonomous automobile path tracking. Technical Report CMU-RITR-09-08, Robotics Institute, Pittsburgh, PA (2009)

    Google Scholar 

  21. Elbanhawi, M., Simic, M., Jazar, R.: Receding horizon lateral vehicle control for pure pursuit path tracking. J. Vib. Control (2016) (In press)

    Google Scholar 

  22. Mayne, D.Q.: Model predictive control: recent developments and future promise. Automatica 50(12), 2967–2986 (2014)

    Google Scholar 

  23. Wang, L.L.: Model Predictive Control System Design and Implementation Using MATLAB. Springer Publishing Company, Incorporated (2009)

    Google Scholar 

  24. Gu, D., Hu, H.: Receding horizon tracking control of wheeled mobile robots. IEEE Trans. Control Syst. Technol. 14, 743–749 (2006)

    Article  Google Scholar 

  25. Attia, R., Orjuela, R., Basset, M.: Combined longitudinal and lateral control for automated vehicle guidance. Veh. Syst. Dyn. 52, 261–279 (2014)

    Article  Google Scholar 

  26. Falcone, P., Borrelli, F., Asgari, J., Tseng, H.E., Hrovat, D.: Predictive active steering control for autonomous vehicle systems. IEEE Trans. Control Syst. Technol. 15, 566–580 (2007)

    Article  MATH  Google Scholar 

  27. Beal, C.E., Gerdes, J.C.: Model predictive control for vehicle stabilization at the limits of handling. IEEE Trans. Control Syst. Technol. 21, 1258–1269 (2013)

    Article  Google Scholar 

  28. Murdin, L., Golding, J., Bronstein, A.: Managing motion sickness. BMJ 343 (2011)

    Google Scholar 

  29. Diels, C., Bos, J.E.: Self-driving carsickness. Appl. Ergonom. (2015)

    Google Scholar 

  30. Schoettle, B., Sivak, M.: Motion sickness in self-driving vehicles. The University of Michigan Sustainable Worldwide Transportation, The University of Michigan Transportation Research Institute, 2901 Baxter Road, Ann Arbor, Michigan 48109-2150 U.S.A. UMTRI-2015-12 (2015)

    Google Scholar 

  31. Elbanhawi, M., Simic, M., Jazar, R.: In the passenger seat: investigating ride comfort measures in autonomous cars. Intell. Transp. Syst. Mag. IEEE 7, 4–17 (2015)

    Article  Google Scholar 

  32. Le Vine, S., Zolfaghari, A., Polak, J.: Autonomous cars: the tension between occupant experience and intersection capacity. Transp. Res. Part C: Emerg. Technol. 52(3), 1–14 (2015)

    Google Scholar 

  33. Turner, M., Griffin, M.J.: Motion sickness in public road transport: passenger behaviour and susceptibility. Ergonomics 42, 444–461 (1999)

    Google Scholar 

  34. Elbanhawi, M., Simic, M.: Randomised kinodynamic motion planning for an autonomous vehicle in semi-structured agricultural areas. Biosyst. Eng. 126(10), 30–44 (2014)

    Google Scholar 

  35. Elbanhawi, M., Simic, M., Jazar, R.: The role of path continuity in lateral vehicle control. Proc. Comput. Sci. 60, 1289–1298 (2015)

    Google Scholar 

  36. Jazar, R.N.: Vehicle Dynamics: Theory and Application. Springer (2008)

    Google Scholar 

  37. Marzbani, H., Jazar, R., Fard, M.: Steady-state vehicle dynamics. In: Dai, L., Jazar, R.N. (eds.) Nonlinear Approaches in Engineering Applications, pp. 3–30. Springer International Publishing (2015)

    Google Scholar 

  38. Rajamani, R.: Lateral vehicle dynamics. In: Vehicle Dynamics and Control, pp. 15–46. Springer, US (2012)

    Google Scholar 

  39. Soudbakhsh, D., Eskandarian, A.: Vehicle lateral and steering control. In: Eskandarian, A. (ed.) Handbook of Intelligent Vehicles, pp. 209–232. Springer, London (2012)

    Google Scholar 

  40. Petrov, P., Nashashibi, F.: Adaptive steering control for autonomous lane change maneuver. In: Intelligent Vehicles Symposium (IV), 2013, pp. 835–840. IEEE (2013)

    Google Scholar 

  41. van Winsum, W.: Speed choice and steering behavior in curve driving. Human Factors 38, 434+ (1996)

    Google Scholar 

  42. van Winsum, W., de Waard, D., Brookhuis, K.A.: Lane change manoeuvres and safety margins. Transp. Res. Part F: Traffic Psychol. Behav. 2(9), 139–149 (1999)

    Google Scholar 

  43. Marzbani, H., Ahmad Salahuddin, M.H., Simic, M., Fard, M., Jazar, R.N.: Steady-state dynamic steering. Front. Artif. Intell. Appl. 262, 493–504 (2014)

    Google Scholar 

  44. ISO 2631-1 (International Organisation for Standardisation): Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration—Part 1: General Requirements. ISO 2631-1 International Organisation for Standardisation, Geneva (1997)

    Google Scholar 

Download references

Acknowledgments

The first author recognizes the Australian government funding through the Australian Postgraduate Award (APA), Research Training Scheme (RTS) and Higher Degree Research Publication Grant (HDRPG) scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Elbanhawi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Elbanhawi, M., Simic, M., Jazar, R. (2016). The Effect of Receding Horizon Pure Pursuit Control on Passenger Comfort in Autonomous Vehicles. In: Pietro, G., Gallo, L., Howlett, R., Jain, L. (eds) Intelligent Interactive Multimedia Systems and Services 2016. Smart Innovation, Systems and Technologies, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-39345-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39345-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39344-5

  • Online ISBN: 978-3-319-39345-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics