Skip to main content

Crystallization in Nanoparticles

  • Chapter
  • First Online:
Controlling the Morphology of Polymers

Abstract

Confined polymers have attracted attention in the last years because of their implementation in current and future technologies. Moreover, these nanostructured materials provide systems for study finite-size effects in soft matter where changes of the physical properties, in comparison to the bulk, have been observed. Particularly, polymer crystallization has been reported to be strongly affected by confinement: different morphologies are observed, crystallization rates decrease, surface-induced phases appear and even crystallization might be inhibited. In this work, we explore the crystallization of poly(lactic acid) nanoparticles, prepared following two different protocols. We observed the formation of a mesophase dependent on the preparation method. Also, we present the possibility of preparing morphology-controlled polymer nanocrystals, using the polymer nanoparticles as template.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Alcoutlabi M, McKenna GB (2005) Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter 17:R461

    Article  CAS  Google Scholar 

  • Anderson JM, Shive MS (2012) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 64(Suppl):72–82

    Article  Google Scholar 

  • Asada M, Jiang N, Sendogdular L, Gin P, Wang Y, Endoh MK, Koga T, Fukuto M, Schultz D, Lee M, Li X, Wang J, Kikuchi M, Takahara A (2012) Heterogeneous lamellar structures near the polymer/substrate interface. Macromolecules 45:7098–7106

    Article  CAS  Google Scholar 

  • Bassett DC, Olley RH, Al Raheil IAM (1988) On crystallization phenomena in PEEK. Polymer 29:1745–1754

    Article  CAS  Google Scholar 

  • Bertoldo M, Labardi M, Rotella C, Capaccioli S (2010) Enhanced crystallization kinetics in poly(ethylene terephthalate) thin films evidenced by infrared spectroscopy. Polymer 51:3660–3668

    Article  CAS  Google Scholar 

  • Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado MA, Lopez Manchado MA (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phys 129:823–831

    Article  CAS  Google Scholar 

  • Bonanno LM, Segal E (2011) Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. Nanomedicine 6:1755–1770

    Article  CAS  Google Scholar 

  • Boucher VM, Cangialosi D, Yin H, Schonhals A, Alegria A, Colmenero J (2012) Tg depression and invariant segmental dynamics in polystyrene thin films. Soft Matter 8:5119–5122

    Article  CAS  Google Scholar 

  • Cai YB, Gao CT, Xu XL, Fu Z, Fei XZ, Zhao Y, Chen Q, Iu XZ, Wei QF, He GF, Fong H (2012) Electrospun ultrafine composite fibers consisting of lauric acid and polyamide 6 as form-stable phase change materials for storage and retrieval of solar thermal energy. Solar Energy Mater Solar Cell 103:53–61

    Article  CAS  Google Scholar 

  • Capitán MJ, Rueda DR, Ezquerra TA (2004) Inhibition of the crystallization in nanofilms of poly(3-hydroxybutyrate). Macromolecules 37:5653–5659

    Article  Google Scholar 

  • Chen D, Zhao W, Russell TP (2012) P3HT nanopillars for organic photovoltaic devices nanoimprinted by AAO templates. ACS Nano 6:1479–1485

    Article  CAS  Google Scholar 

  • Coakley KM, Mcgehee MD (2004) Conjugated polymer photovoltaic cells. Chem Mater 16:4533–4542

    Article  CAS  Google Scholar 

  • Deng R, Liang F, Li W, Yang Z, Zhu J (2013) Reversible transformation of nanostructured polymer particles. Macromolecules 46:7012–7017

    Article  CAS  Google Scholar 

  • Despotopoulou MM, Miller RD, Rabolt JF, Frank CW (1996) Polymer chain organization and orientation in ultrathin films: a spectroscopic investigation. J Polym Sci B 34:2335–2349

    Article  CAS  Google Scholar 

  • Di Benedetto F, Camposeo A, Pagliara S, Mele E, Persano L, Stabile R, Cingolani R, Pisignano D (2008) Patterning of light-emitting conjugated polymer nanofibres. Nat Nanotechnol 3:614–619

    Article  Google Scholar 

  • Forrest JA, Dalnoki-Veress K, Dutcher JR (1997) Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys Rev E 56:5705

    Article  CAS  Google Scholar 

  • Garcia-Gutierrez M-C, Linares A, Martin-Fabiani I, Hernandez JJ, Soccio M, Rueda DR, Ezquerra TA, Reynolds M (2013) Understanding crystallization features of P(VDF-TrFE) copolymers under confinement to optimize ferroelectricity in nanostructures. Nanoscale 5:6006–6012

    Article  CAS  Google Scholar 

  • Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  • Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196

    Article  CAS  Google Scholar 

  • Grigoriadis C, Duran H, Steinhart M, Kappl M, Butt H-J, Floudas G (2011) Suppression of phase transitions in a confined rodlike liquid crystal. ACS Nano 5:9208–9215

    Article  CAS  Google Scholar 

  • Guan FX, Wang J, Yang LY, Tseng JK, Han K, Wang Q, Zhu L (2011) Confinement-induced high-field antiferroelectric-like behavior in a poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymer. Macromolecules 44:2190–2199

    Article  CAS  Google Scholar 

  • Kietzke T, Neher D, Kumke M, Ghazy O, Ziener U, Landfester K (2007) Phase separation of binary blends in polymer nanoparticles. Small 3:1041–1048

    Article  CAS  Google Scholar 

  • Landfester K (2001) The generation of nanoparticles in miniemulsions. Adv Mater 13:765–768

    Article  CAS  Google Scholar 

  • Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 48:4488–4507

    Article  CAS  Google Scholar 

  • Li CY (2009) Polymer single crystal meets nanoparticles. J Polym Sci B 47:2436–2440

    Article  CAS  Google Scholar 

  • Li X, Malardier-Jugroot C (2011) Synthesis of polypyrrole under confinement in aqueous environment. Mol Simul 37:694–700

    Article  CAS  Google Scholar 

  • Li JJ, Tan SB, Ding SJ, Li HY, Yang LJ, Zhang ZC (2012) High-field antiferroelectric behaviour and minimized energy loss in poly(vinylidene-co-trifluoroethylene)-graft-poly(ethyl methacrylate) for energy storage application. J Mater Chem 22:23468–23476

    Article  CAS  Google Scholar 

  • Liu Y-X, Chen E-Q (2010) Polymer crystallization of ultrathin films on solid substrates. Coord Chem Rev 254:1011–1037

    Article  CAS  Google Scholar 

  • Maillard D, Prud’homme RE (2008) Crystallization of ultrathin films of polylactides: from chain chirality to lamella curvature and twisting. Macromolecules 41:1705–1712

    Article  CAS  Google Scholar 

  • Mano JF, Wang Y, Viana JC, Denchev Z, Oliveira MJ (2004) Cold crystallization of PLLA studied by simultaneous SAXS and WAXS. Macromol Mater Eng 289:910–915

    Article  CAS  Google Scholar 

  • Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219

    Article  CAS  Google Scholar 

  • Martin J, Campoy-Quiles M, Nogales A, Garriga M, Alonso MI, Goni AR, Martin-Gonzalez M (2014) Poly(3-hexylthiophene) nanowires in porous alumina: internal structure under confinement. Soft Matter 10:3335–3346

    Article  CAS  Google Scholar 

  • Martín J, Mijangos C (2009) Tailored polymer-based nanofibers and nanotubes by means of different infiltration methods into alumina nanopores. Langmuir 25:1181–1187

    Article  Google Scholar 

  • Martín J, Maiz J, Sacristan J, Mijangos C (2012) Tailored polymer-based nanorods and nanotubes by “template synthesis”: from preparation to applications. Polymer 53:1149–1166

    Article  Google Scholar 

  • Martín Gago JA, Briones Llorente C, Casero Junquera E, Serena Domingo PA (2008) Nanotecnologia y Nanociencia: Entre la ciencia ficción del presente y la tecnología del futuro. Fundación Española para la Ciencia y la Tecnología, Madrid

    Google Scholar 

  • Martínez-Tong DE, Soccio M, Sanz A, García C, Ezquerra TA, Nogales A (2013) Chain arrangement and glass transition temperature variations in polymer nanoparticles under 3D-confinement. Macromolecules 46:4698–4705

    Article  Google Scholar 

  • Martínez-Tong DE, Cui J, Soccio M, García C, Ezquerra TA, Nogales A (2014) Does the glass transition of polymers change upon 3D confinement? Macromol Chem Phys 215:1620–1624

    Article  Google Scholar 

  • Massa MV, Dalnoki-Veress K (2004) Homogeneous crystallization of poly(ethylene oxide) confined to droplets: the dependence of the crystal nucleation rate on length scale and temperature. Phys Rev Lett 92:255509

    Article  Google Scholar 

  • Massa MV, Dalnoki-Veress K, Forrest JA (2003) Crystallization kinetics and crystal morphology in thin poly(ethylene oxide) films. Eur Phys J E 11:191–198

    Article  CAS  Google Scholar 

  • McKenna GB (2003) Status of our understanding of dynamics in confinement: perspectives from confit 2003. Eur Phys J E 12:191

    Article  CAS  Google Scholar 

  • Mohapatra SR, Thakur AK, Choudhary RNP (2009) Effect of nanoscopic confinement on improvement in ion conduction and stability properties of an intercalated polymer nanocomposite electrolyte for energy storage applications. J Power Sources 191:601–613

    Article  CAS  Google Scholar 

  • Napolitano S, Cangialosi D (2013) Interfacial free volume and vitrification: reduction in Tg in proximity of an adsorbing interface explained by the free volume holes diffusion model. Macromolecules 46:8051–8053

    Article  CAS  Google Scholar 

  • Napolitano S, Wübbenhorst M (2007) Deviation from bulk behaviour in the cold crystallization kinetics of ultrathin films of poly(3-hydroxybutyrate). J Phys Condens Matter 19:205121

    Article  Google Scholar 

  • Napolitano S, Capponi S, Vanroy B (2013) Glassy dynamics of soft matter under 1D confinement: how irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur Phys J E 36:1–37

    Article  Google Scholar 

  • Qiu J, Wang Z, Yang L, Zhao J, Niu Y, Hsiao BS (2007) Deformation-induced highly oriented and stable mesomorphic phase in quenched isotactic polypropylene. Polymer 48:6934–6947

    Article  CAS  Google Scholar 

  • Rebollar E, Pérez S, Hernández JJ, Martín-Fabiani I, Rueda DR, Ezquerra TA, Castillejo M (2011) Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space. Langmuir 27:5596–5606

    Article  CAS  Google Scholar 

  • Reiter G, de Gennes PG (2001) Spin-cast, thin, glassy polymer films: highly metastable forms of matter. Eur Phys J E 6:25

    Article  CAS  Google Scholar 

  • Reiter G, Sommer J-U (1998) Crystallization of adsorbed polymer monolayers. Phys Rev Lett 80:3771

    Article  CAS  Google Scholar 

  • Rotella C, Wübbenhorst M, Napolitano S (2011) Probing interfacial mobility profiles via the impact of nanoscopic confinement on the strength of the dynamic glass transition. Soft Matter 7:5260

    Article  CAS  Google Scholar 

  • Santa Cruz C, Stribeck N, Zachmann HG, Balta Calleja FJ (1991) Novel aspects in the structure of poly(ethylene terephthalate) as revealed by means of small angle x-ray scattering. Macromolecules 24:5980–5990

    Article  CAS  Google Scholar 

  • Schönhals A, Goering H, Schick C (2002) Segmental and chain dynamics of polymers: from the bulk to the confined state. J Non Cryst Solids 305:140

    Article  Google Scholar 

  • Shimizu H, Yamada M, Wada R, Okabe M (2007) Preparation and characterization of water self-dispersible poly(3-hexylthiophene) particles. Polym J 40:33–36

    Article  Google Scholar 

  • Soles CL, Ding Y (2008) Nanoscale polymer processing. Science 322:689–690

    Article  CAS  Google Scholar 

  • Stoclet G, Seguela R, Lefebvre JM, Elkoun S, Vanmansart C (2010a) Strain-induced molecular ordering in polylactide upon uniaxial stretching. Macromolecules 43:1488–1498

    Article  CAS  Google Scholar 

  • Stoclet G, Seguela R, Lefebvre JM, Rochas C (2010b) New Insights on the strain-induced mesophase of poly(d, l-lactide): in situ WAXS and DSC study of the thermo-mechanical stability. Macromolecules 43:7228–7237

    Article  CAS  Google Scholar 

  • Strobl G (2006) Crystallization and melting of bulk polymers: new observations, conclusions and a thermodynamic scheme. Prog Polym Sci 31:398–442

    Article  CAS  Google Scholar 

  • Svorcik V, Slepicka P, Siegel J, Reznickova A, Lyutakov O, Kvitek O, Hubacek T, Slepickova Kasalkova N, Kolska Z (2013) Nanostructuring of solid surfaces. In: Dong Y (ed) Nanostructures: properties, production methods and applications. Nova Science Publishers, Hauppauge, NY

    Google Scholar 

  • Tong L, Cheng BW, Liu ZS, Wang Y (2011) Fabrication, structural characterization and sensing properties of polydiacetylene nanofibers templated from anodized aluminum oxide. Sens Actuat B Chem 155:584–591

    Article  CAS  Google Scholar 

  • Tsui OKC, Zhang HF (2001) Effects of chain ends and chain entanglement on the glass transition temperature of polymer thin films. Macromolecules 34:9139

    Article  CAS  Google Scholar 

  • Vanroy B, Wübbenhorst M, Napolitano S (2013) Crystallization of thin polymer layers confined between two adsorbing walls. ACS Macro Lett 2:168

    Article  CAS  Google Scholar 

  • Wang Y, Chan C-M, Ng K-M, Li L (2008) What controls the lamellar orientation at the surface of polymer films during crystallization? Macromolecules 41:2548–2553

    Article  CAS  Google Scholar 

  • Wang Y, Li M, Wang K, Hao C, Li Q, Shen C (2014) Unusual structural evolution of poly(lactic acid) upon annealing in the presence of an initially oriented mesophase. Soft Matter 10:1512–1518

    Article  CAS  Google Scholar 

  • Wasanasuk K, Tashiro K (2011) Structural regularization in the crystallization process from the glass or melt of poly(l-lactic acid) viewed from the temperature-dependent and time-resolved measurements of FTIR and wide-angle/small-angle X-ray scatterings. Macromolecules 44:9650–9660

    Article  CAS  Google Scholar 

  • Wasanasuk K, Tashiro K, Hanesaka M, Ohhara T, Kurihara K, Kuroki R, Tamada T, Ozeki T, Kanamoto T (2011) Crystal structure analysis of poly(l-lactic acid) α form on the basis of the 2-dimensional wide-angle synchrotron X-ray and neutron diffraction measurements. Macromolecules 44:6441–6452

    Article  CAS  Google Scholar 

  • Wei X-F, Bao R-Y, Cao Z-Q, Zhang L-Q, Liu Z-Y, Yang W, Xie B-H, Yang M-B (2014) Greatly accelerated crystallization of poly(lactic acid): cooperative effect of stereocomplex crystallites and polyethylene glycol. Colloid Polym Sci 292:163–172

    Article  CAS  Google Scholar 

  • Wübbenhorst M, Lupascu V (2005) Glass transition effects in ultra-thin polymer films studied by dielectric spectroscopy—chain confinement vs. finite size effects. In: 12th international symposium on electrets, p 87

    Google Scholar 

  • Wunderlich B (1973) Macromolecular physics, vol 1: crystal structure, morphology, defects. Academic, New York

    Google Scholar 

  • Xiong Z, Liu G, Zhang X, Wen T, DE Vos S, Joziasse C, Wang D (2013) Temperature dependence of crystalline transition of highly-oriented poly(l-lactide)/poly(d-lactide) blend: in-situ synchrotron X-ray scattering study. Polymer 54:964–971

    Article  CAS  Google Scholar 

  • Xu J, Guo B-H, Zhou J-J, Li L, Wu J, Kowalczuk M (2005) Observation of banded spherulites in pure poly(l-lactide) and its miscible blends with amorphous polymers. Polymer 46:9176–9185

    Article  CAS  Google Scholar 

  • Yu DG, Branford-White C, Williams GR, Bligh SWA, White K, Zhu LM, Chatterton NP (2011) Self-assembled liposomes from amphiphilic electrospun nanofibers. Soft Matter 7:8239–8247

    Article  CAS  Google Scholar 

  • Yuan K, Li F, Chen YW, Wang XF, Chen L (2011) In situ growth nanocomposites composed of rodlike ZnO nanocrystals arranged by nanoparticles in a self-assembling diblock copolymer for heterojunction optoelectronics. J Mater Chem 21:11886–11894

    CAS  Google Scholar 

  • Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41:1352–1357

    Article  CAS  Google Scholar 

  • Zhang J, Duan Y, Domb AJ, Ozaki Y (2010) PLLA mesophase and its phase transition behavior in the PLLA−PEG−PLLA copolymer as revealed by infrared spectroscopy. Macromolecules 43:4240–4246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Nogales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nogales, A., Martínez-Tong, D.E. (2016). Crystallization in Nanoparticles. In: Mitchell, G., Tojeira, A. (eds) Controlling the Morphology of Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-39322-3_6

Download citation

Publish with us

Policies and ethics