Skip to main content

Controlling Morphology Using Low Molar Mass Nucleators

  • Chapter
  • First Online:
Controlling the Morphology of Polymers

Abstract

This chapter focuses on the use of low molar mass compounds which self-assemble in to fibrillar structures within a polymer melt. Application of modest shear rate to the system will result in a common alignment of these fibrils which can serve as row nuclei for the subsequent crystallisation of the polymer matrix. Thus the combination of small quantities of a low molar mass compound and modest shear flow leads to a semi-crystalline morphology with a well defined anisotropy and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bassett DC (2006) Linear nucleation of polymers. Polymer 47:5221–5227

    Article  CAS  Google Scholar 

  • Cavagna A (2009) Supercooled liquids for pedestrians. Phys Rep 476(4–6):51–124

    Article  CAS  Google Scholar 

  • García-Ruiz JM, Villasuso R, Ayora C, Canals A, Otálora F (2007) Formation of natural gypsum megacrystals in Naica, Mexico. Geology 35(4):327–330

    Article  Google Scholar 

  • Grubb DT, Dlugosz J, Keller A (1975) Direct observation of lamellar morphology in polyethylene. J Mater Sci 10:1826–1828

    Article  CAS  Google Scholar 

  • Hanssen M, Marsden J (1984) E for additives: the complete E number guide. Thorsons, Wellingborough

    Google Scholar 

  • Kashchiev D, Vekilov PG, Kolomeisky AB (2005) Kinetics of two-step nucleation of crystals. J Chem Phys 122:244706

    Article  Google Scholar 

  • Lovell R, Mitchell GR (1981) Molecular orientation distribution derived from an arbitrary reflection. Acta Cryst A37:135–137

    Article  CAS  Google Scholar 

  • Mitchell GR (2013) Characterisation of safe nanostructured polymers. In: Silvestre C, Cimmino S (eds) Ecosustainable polymer nanomaterials for food packaging. Taylor and Francis, Boca Raton, Print ISBN: 978-90-04-20737-0, eBook ISBN: 978-90-04-20738-7

    Google Scholar 

  • Nogales A, Mitchell GR (2005) Development of highly oriented polymer crystals from row assemblies. Polymer 46:5615–5620

    Article  CAS  Google Scholar 

  • Nogales A, Olley RH, Mitchell GR (2003a) Directed crystallisation of synthetic polymers by low-molar-mass self-assembled templates. Macromol Rapid Commun 24:496–502

    Article  CAS  Google Scholar 

  • Nogales A, Mitchell GR, Vaughan AS (2003b) Anisotropic crystallization in polypropylene induced by deformation of a nucleating agent network. Macromolecules 36:4898–4906

    Article  CAS  Google Scholar 

  • Nogales A, Thornley SA, Mitchell GR (2004) Shear cell for in-situ WAXS, SAXS and SANS experiments on polymer melts under flow fields. J Macromol Sci Phys B43:1161–1170

    Article  CAS  Google Scholar 

  • Nogales A, Olley RH, Mitchell GR (2016) On morphology of row structures in polyethylene generated by shear alignment of dibenzylidene sorbitol. J Polym Res (Submitted)

    Google Scholar 

  • Okesola BO, Vieira VMP, Cornwell DJ, Whitelaw NK, Smith DK (2015) 1,3:2,4-Dibenzylidene-D-sorbitol (DBS) and its derivatives—efficient, versatile and industrially relevant low-molecular-weight gelators with over 100 years of history and a bright future. Soft Matter 11:4768–4787

    Article  CAS  Google Scholar 

  • Olley RH, Mitchell GR, Moghaddam Y (2014) On row-structures in sheared polypropylene and a propylene-ethylene copolymer. Eur Polym J 53:37–49

    Article  CAS  Google Scholar 

  • Pople JA, Mitchell GR, Sutton SJ, Vaughan AS, Chai C (1999) The development of organised structures in polyethylene crystallised from a sheared melt, analyzed by WAXS and TEM. Polymer 40:2769–2777

    Article  CAS  Google Scholar 

  • Sangeetha NM, Maitra U (2005) Supramolecular gels: functions and uses. Chem Soc Rev 34:821–836

    Article  CAS  Google Scholar 

  • Siripitayananon J, Wangsoub S, Olley RH, Mitchell GR (2004) The use of a low-molar-mass self-assembled template to direct the crystallisation of poly (epsilon-caprolactone). Macromol Rapid Commun 25:1365–1370

    Article  CAS  Google Scholar 

  • Smith DK (2009) Lost in translation? Chirality effects in the self-assembly of nanostructured gel-phase materials. Chem Soc Rev 38:684–694

    Article  CAS  Google Scholar 

  • Terech P, Weiss RG (1997) Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev 97(8):3133–3160

    Article  CAS  Google Scholar 

  • Tuffen H, James M, Castro J, Schipper CI (2013) Exceptional mobility of an advancing rhyolitic obsidian flow at Cordon Caulle volcano in Chile: observations from Cordón Caulle, Chile, 2011-2013. Nat Commun 4:2709. doi:10.1038/ncomms3709

    Article  Google Scholar 

  • Van Driessche AES, García-Ruíz JM, Tsukamoto K, Patiño-Lopez LD, Satoh H (2011) Ultraslow growth rates of giant gypsum crystals. Proc Natl Acad Sci U S A 108:15721–15726

    Article  Google Scholar 

  • Wangsoub S, Mitchell GR (2009) Shear controlled crystal size definition in a low molar mass compound using a polymeric solvent. Soft Matter 5:525

    Article  CAS  Google Scholar 

  • Wangsoub S, Olley RH, Mitchell GR (2005) Directed crystallisation of poly(ε-caprolactone) using a low-molar-mass self-assembled template. Macromol Chem Phys 206:1826–1839

    Article  CAS  Google Scholar 

  • Wangsoub S, Davis FJ, Mitchell GR, Olley RH (2008) Enhanced templating in the crystallisation of poly(ε-caprolactone) using 1,3:2,4-di(4-chlorobenzylidene) sorbitol. Macromol Rapid Commun 2008(29):1861–1865

    Article  Google Scholar 

  • Wangsoub S, Davis FJ, Harris PJF, Mitchell GR, Olley RH (2016a) Structure and morphology of high liquid content gels formed from alkanes and dibenzylidene sorbitol. Phys Chem Chem Phys (Submitted)

    Google Scholar 

  • Wangsoub S, Olley RH, Mitchell GR (2016b) Templating the crystallisation of polyethylene using dibenzylidene sorbitol. Macromol Chem Phys (Submitted)

    Google Scholar 

  • Watase M, Itagaki H (1998) Thermal and rheological properties of physical gels formed from benzylidene-D-sorbitol derivatives. Bull Chem Soc Jpn 71(6):1457–1466

    Article  CAS  Google Scholar 

  • Yamasaki S, Tsutsumi H (1994) Microscopic studies of 1,3: 2,4-di-O-benzylidene-D-sorbitol in ethylene glycol. Bull Chem Soc Jpn 67:906–911

    Article  CAS  Google Scholar 

  • Yamasaki S, Tsutsumi H (1995) The dependence of the polarity of solvents on 1,3: 2,4-di-o-benzylidene-D-sorbitol gel. Bull Chem Soc Jpn 68:123–127

    Article  CAS  Google Scholar 

  • Yamasaki S, Ohashi Y, Tsutsumi H, Tsujii K (1995) The aggregated higher-structure of 1,3: 2,4-di-o-benzylidene-D-sorbitol in organic gels. Bull Chem Soc Jpn 68:146–151

    Article  CAS  Google Scholar 

  • Zweifel H (2001) Plastics additives handbook. Hanser, Munich, Chapter 18

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundação para a Ciência e a Tecnologia (Portugal) through project PTDC/CTM-POL/7133/2014 and through the Project reference UID/Multi/04044/2013.

We thank Naresuan University for supporting SW during her Ph.D. programme and the Faculty of Science at Naresuan University for funding subsequent short visits when much of the work described here was performed.

This chapter contains various data recorded at international synchrotron and neutron scattering facilities. We are indebted to those facilities for access and to the beamline scientists for their involvement in these experiments; Dr. Sigrid Bernstoff (Elettra), Dr. Francois Fauth (ESRF), Dr. Sergio Funari (Hasylab), Dr. Jen Hiller and Dr. Nick Terrill (Diamond), Dr. Steve King, Dr. Sarah Rogers, Dr. Ann Terry and Dr. Richard Heenan (ISIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey R. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mitchell, G.R., Wangsoub, S., Nogales, A., Davis, F.J., Olley, R.H. (2016). Controlling Morphology Using Low Molar Mass Nucleators. In: Mitchell, G., Tojeira, A. (eds) Controlling the Morphology of Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-39322-3_5

Download citation

Publish with us

Policies and ethics