Skip to main content

Crystallization in Nanocomposites

  • Chapter
  • First Online:
Controlling the Morphology of Polymers

Abstract

Nanocomposites based on polymer matrices have been studied extensively (Paul and Robeson 2008). In the majority of these studies, the focus has been the enhancements in properties through the addition of relatively small quantities of nanoparticles. In this chapter, we centre our attention on the effects, if any, of the nanoparticles on the behaviour of the polymer matrix and in particular the nucleation and growth of crystal phases in the case of crystallizable polymers. We first consider the influence of macroscopic particles on this behaviour by examining the influence of polymer fibres on the matrix behaviour. We then consider the situation in polydisperse melts where extended objects can be formed from the high molecular weight fraction in the melt, and then finally we review work reported in this field in the context of nanoscale fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo el Maaty MI, Bassett DC (2005) Evidence for isothermal lamellar thickening at and behind the growth front as polyethylene crystallizes from the melt. Polymer 46:8682–8688

    Article  CAS  Google Scholar 

  • Abo el Maaty MI, Bassett DC (2006) On the time for fold surfaces to order during the crystallization of polyethylene from the melt and its dependence on molecular parameters. Polymer 47:7469–7476

    Article  CAS  Google Scholar 

  • Amornsakchai T, Bassett DC, Olley RH, Hine PJ, Ward IM (2000) On morphologies developed during two-dimensional compaction of woven polypropylene tapes. J Appl Polym Sci 78:787–793

    Article  CAS  Google Scholar 

  • An Y, Holt JJ, Mitchell GR, Vaughan AS (2006) Influence of molecular composition on the development of microstructure from sheared polyethylene melts: molecular and lamellar templating. Polymer 47:5643–5656

    Article  CAS  Google Scholar 

  • Bafna A, Beaucage G, Mirabella F, Mehta S (2003) 3D hierarchical orientation in polymer–clay nanocomposite films. Polymer 44:1103–1115

    Article  CAS  Google Scholar 

  • Bhattacharyya AR, Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2003) Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44:2373–2377

    Article  CAS  Google Scholar 

  • Bianco A, Cheng HM, Enoki T, Gogotsi Y, Hurt RH, Koratkar K, Kyotanic T, Monthioux M, Park CR, Tacson JMD, Zhang J (2013) All in the graphene family—a recommended nomenclature for two-dimensional carbon materials. Carbon 65:1–6

    Article  CAS  Google Scholar 

  • Bin Y, Kitanaka M, Zhu D, Matsuo M (2003) Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions. Macromolecules 36:6213–6219

    Article  CAS  Google Scholar 

  • Broza G, Kwiatkowska M, RosÅ‚aniec Z, Schulte K (2005) Processing and assessment of poly(butylene terephthalate) nanocomposites reinforced with oxidized single wall carbon nanotubes. Polymer 46:5860–5867

    Article  CAS  Google Scholar 

  • Butler P (1999) Shear induced structures and transformations in complex fluids. Curr Opin Colloid Interface Sci 4:214–221

    Article  CAS  Google Scholar 

  • Chae HG, Sreekumar TV, Uchida T, Kumar S (2005) A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber. Polymer 46:10925–10935

    Article  CAS  Google Scholar 

  • Chen Y-H, Zhong G-J, Lei J, Li Z-M, Hsiao BS (2011) In situ synchrotron X-ray scattering study on isotactic polypropylene crystallization under the coexistence of shear flow and carbon nanotubes. Macromolecules 44:8080–8092

    Article  CAS  Google Scholar 

  • Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26:412–416

    Article  CAS  Google Scholar 

  • Choi WJ, Kim SC (2004) Effects of talc orientation and non-isothermal crystallization rate on crystal orientation of polypropylene in injection-molded polypropylene/ethylene-propylene rubber/talc blends. Polymer 45:2393–2401

    Article  CAS  Google Scholar 

  • Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582

    CAS  Google Scholar 

  • Dykes LMC, Torkelson JM, Burghardt WR (2012) Shear-induced orientation in well-exfoliated polystyrene/clay nanocomposites. Macromolecules 45:1622–1630

    Article  CAS  Google Scholar 

  • Fong H, Liu WD, Wang C-S, Vaia RA (2002) Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite. Polymer 43:775–780

    Article  CAS  Google Scholar 

  • Fornes TD, Baur JW, Sabba Y, Thomas EL (2006) Morphology and properties of melt-spun polycarbonate fibers containing single-and multi-wall carbon nanotubes. Polymer 47:1704–1714

    Article  CAS  Google Scholar 

  • Garcia-Gutiérrez MC, Nogales A, Rueda DR, Domingo C, García Ramos JV, Broza G, RosÅ‚aniec Z, Schulte K, Davies RJ, Ezquerra TA (2006) Templating of crystallization and shear-induced self-assembly of single-wall carbon nanotubes in a polymer-nanocomposite. Polymer 47:341–345

    Article  Google Scholar 

  • García-Gutiérrez MC, Hernández JJ, Nogales A, Panine P, Rueda DR, Ezquerra TA (2008) Influence of shear on the templated crystallization of poly(butylene terephthalate)/single wall carbon nanotube nanocomposites. Macromolecules 41:844–851

    Article  Google Scholar 

  • Hernández JJ, García-Gutiérrez MC, Nogales A, Rueda DR, Ezquerra TA (2006) Small-angle X-ray scattering of single-wall carbon nanotubes dispersed in molten poly(ethylene terephthalate). Compos Sci Technol 66:2629–2632

    Article  Google Scholar 

  • Hernández JJ, García-Gutiérrez MC, Nogales A, Rueda DR, Kwiatkowska M, Szymczyk A, RosÅ‚aniec Z, Concheso A, Guinea I, Ezquerra TA (2009a) Influence of preparation procedure on the conductivity and transparency of SWCNT-polymer nanocomposites. Compos Sci Technol 69:1867–1872

    Article  Google Scholar 

  • Hernández JJ, García-Gutiérrez MC, Nogales A, Rueda DR, Ezquerra TA (2009b) Shear effect on crystallizing single wall carbon nanotube/poly(butylene terephthalate) nanocomposites. Macromolecules 42:4374–4376

    Article  Google Scholar 

  • Hine PJ, Ward IM, Olley RH, Bassett DC (1993) The hot compaction of high modulus melt-spun polyethylene fibres. J Mater Sci 28:316–324

    Article  CAS  Google Scholar 

  • Hine PJ, Ward IM, El Maaty MIA, Olley RH, Bassett DC (2000) The hot compaction of 2-dimensional woven melt spun high modulus polyethylene fibres. J Mater Sci 35:5091–5099

    Article  CAS  Google Scholar 

  • Hobbie EK, Wang H, Kim H, Lin-Gibson S, Grulke EA (2003) Orientation of carbon nanotubes in a sheared polymer melt. Phys Fluids 15:1196–1202

    Article  CAS  Google Scholar 

  • Hristozov D, Malsch I (2009) Hazards and risks of engineered nanoparticles for the environment and human health. Sustainability 1:1161–1194

    Article  CAS  Google Scholar 

  • Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond Ser A 102:161

    Article  Google Scholar 

  • Jie L, Yujun H, Yimo H, Kai L, Jiaping W, Qunqing L, Shoushan F, Kaili J (2012) Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett 12(8):4095–4101

    Article  Google Scholar 

  • Jimenez G, Ogata N, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly(ϵ-caprolactone)-clay blend. J Appl Polym Sci 64:2211–2220

    Article  CAS  Google Scholar 

  • Jin F-L, Park S-J (2011) A review of the preparation and properties of carbon nanotubes-reinforced polymer composites. Carbon Lett 12:57–69

    Article  Google Scholar 

  • Jordan ND, Bassett DC, Olley RH, Hine PJ, Ward IM (2003) The hot compaction behaviour of woven oriented polypropylene fibres and tapes. II. Morphology of cloths before and after compaction. Polymer 44:1133–1143

    Article  CAS  Google Scholar 

  • Joussein E, Petit J, Churchman J, Theng B, Righi D, Delvaux B (2005) Halloysite clay minerals—a review. Clay Miner 40:383–426

    Article  CAS  Google Scholar 

  • Kalay G, Bevis MJ (1997) Processing and physical property relationships in injection-molded isotactic polypropylene. 2. Morphology and crystallinity. J Polym Sci B Polym Phys 35:265–291

    Article  CAS  Google Scholar 

  • Keller A, Kolnaar HWH (1997) Flow-induced orientation and structure formation. In: Meijer H (ed) Processing of polymers, vol 18. Wiley, Weinheim, pp 189–268

    Google Scholar 

  • Kim G-M, Lee D-H, Hoffmann B, Kressler J, Stöppelmann G (2001) Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites. Polymer 42:1095–1100

    Article  CAS  Google Scholar 

  • Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O, Kaji K (1994) Fine structure of nylon–6–clay hybrid. J Polym Sci B Polym Phys 32:625–630

    Article  CAS  Google Scholar 

  • Koo CM, Kim JH, Wang KH, Chung IJ (2005) Melt-extensional properties and orientation behaviors of polypropylene-layered silicate nanocomposites. J Polym Sci B Polym Phys 43:158–167

    Article  CAS  Google Scholar 

  • Krishnamoorti R, Vaia RA (2001) Polymer nanocomposites: introduction. In: Vaia RA, Krishnamoorti R (eds) Polymer nanocomposites. ACS symposium series, vol 804, pp 1–5

    Google Scholar 

  • Krishnamoorti R, Yurekli K (2001) Rheology of polymer layered silicate nanocomposites. Curr Opin Colloid Interface Sci 6:464–470

    Article  CAS  Google Scholar 

  • Kumaraswamy G, Issaian AM, Kornfield JA (1999) Shear-enhanced crystallization in isotactic polypropylene. 1. Correspondence between in situ rheo-optics and ex situ structure determination. Macromolecules 32:7537–7547

    Article  CAS  Google Scholar 

  • Lee S, Hong J-Y, Jang J (2003) The effect of graphene nanofiller on the crystallization behavior and mechanical properties of poly(vinyl alcohol). Polym Int 62:901–908

    Article  Google Scholar 

  • Lele A, Mackley M, Galgali G, Ramesh C (2002) In situ rheo-x-ray investigation of flow-induced orientation in layered silicate–syndiotactic polypropylene nanocomposite melt. J Rheol 46:1091–1110

    Article  CAS  Google Scholar 

  • Li J, He Y, Han Y, Liu K, Wang J, Li Q, Fan S, Jiang K (2012) Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett 12:4095–4101

    Article  CAS  Google Scholar 

  • Li T, Xiang S, Ma P, Bai H, Dong W, Chen M (2015) Nanocomposite hydrogel consisting of Na-montmorillonite with enhanced mechanical properties. J Polym Sci B Polym Phys 53:1020–1026

    Article  CAS  Google Scholar 

  • Lim JY, Kim J, Kim S, Kwak S, Lee Y, Seo Y (2015) Nonisothermal crystallization behaviors of nanocomposites of poly(vinylidene fluoride) and multiwalled carbon nanotubes. Polymer 62:11–18

    Article  CAS  Google Scholar 

  • Linares A, Canalda JC, Cagiao ME, García-Gutiérrez MC, Nogales A, Martín-Gullón I, Vera J, Ezquerra TA (2008) Broad-band electrical conductivity of high density polyethylene nanocomposites with carbon nanoadditives: multiwall carbon nanotubes and carbon nanofibers. Macromolecules 41:7090–7097

    Article  CAS  Google Scholar 

  • Maiti P, Okamoto M (2003) Crystallization controlled by silicate surfaces in nylon 6-clay nanocomposites. Macromol Mater Eng 288:440–445

    Article  CAS  Google Scholar 

  • Medellin-Rodriguez FJ, Burger C, Hsiao BS, Chu B, Vaia R, Phillips S (2001) Time-resolved shear behavior of end-tethered nylon 6/clay nanocomposites followed by non-isothermal crystallization. Polymer 42:9015–9023

    Article  CAS  Google Scholar 

  • Medellin-Rodríguez FJ, Hsiao BS, Chu B, Fu BX (2003) Uniaxial deformation of nylon 6-clay nanocomposites by in-situ synchrotron x-ray measurements. J Macromol Sci Phys B42:201–214

    Article  Google Scholar 

  • Mingliang D, Baochun G, Demin J (2010) Newly emerging applications of halloysite nanotubes: a review. Polymer Int 59:574–582

    Google Scholar 

  • Mitchell GR, Duraccio D (2011) Unpublished data

    Google Scholar 

  • Mitchell GR, Davis FJ, Pezutto M (2015) Eur Polym J (in press)

    Google Scholar 

  • Ning N-Y (2007) Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer 48(25):7374–7384

    Article  CAS  Google Scholar 

  • Nogales A, Thornley SA, Mitchell GR (2004a) Shear cell for in-situ WAXS, SAXS and SANS experiments on polymer melts under flow fields. J Macromol Sci Phys B43:1161–1170

    Article  CAS  Google Scholar 

  • Nogales A, Broza G, RosÅ‚aniec Z, Schulte K, Å ics I, Hsiao BS, Sanz A, García-Gutiérrez MC, Rueda DR, Domingo C, Ezquerra TA (2004b) Low percolation threshold in nanocomposites based on oxidized single wall carbon nanotubes and poly(butylene terephthalate). Macromolecules 37:7669–7672

    Article  CAS  Google Scholar 

  • Nowacki R, Monasse B, Piorkowska E, GaÅ‚eski A, Haudin JM (2004) Spherulite nucleation in isotactic polypropylene based nanocomposites with montmorillonite under shear. Polymer 45:4877–4892

    Article  CAS  Google Scholar 

  • Ogata N, Jimenez G, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly(l-lactide)-clay blend. J Polym Sci B Polym Phys 35:389–396

    Article  CAS  Google Scholar 

  • Okamoto M, Nam PH, Maiti P, Kotaka T, Hasegawa N, Usuki A (2001) A house of cards structure in polypropylene/clay nanocomposites under elongational flow. Nano Lett 6:295–298

    Article  Google Scholar 

  • Olley RH, Bassett DC, Hine PJ, Ward IM (1993) Morphology of compacted polyethylene fibres. J Mater Sci 28:1107–1112

    Article  CAS  Google Scholar 

  • Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  • Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    Article  CAS  Google Scholar 

  • Rashmi, Renukappa NM, Ranganathaiah C, Shivakumar KN (2011) Montmorillonite nanoclay filler effects on electrical conductivity, thermal and mechanical properties of epoxy-based nanocomposites. Polym Eng Sci 51: 1827–1836

    Google Scholar 

  • Rasmussen AJ, Ebbesen M (2014) Characteristics, properties and ethical issues of carbon nanotubes in biomedical applications. Nanoethics 8:29–48

    Article  Google Scholar 

  • Ravindra K, Manasi G, Sheetal G, Bijoy KP (2012) Halloysite nanotubes and applications: a review. J Adv Sci Res 3:25–29

    Google Scholar 

  • Razado-Colambo R, Avila J, Chen C, Nys JP, Wallart X, Asensio MC, Vignaud D (2015) Probing the electronic properties of graphene on C-face SiC down to single domains by nanoresolved photoelectron spectroscopies. Phys Rev B 92:035105

    Article  Google Scholar 

  • Rozanski A, Monasse B, Szkudlarek E, Pawlak A, Piorkowska E, GaÅ‚eski A, Haudin JM (2009) Shear-induced crystallization of isotactic polypropylene based nanocomposites with montmorillonite. Eur Polym J 45:88–101

    Article  CAS  Google Scholar 

  • Seki M, Thurman DW, Oberhauser JP, Kornfield JA (2002) Shear-induced orientation in the crystallization of an isotactic polypropylene nanocomposite. Macromolecules 35:2583

    Article  CAS  Google Scholar 

  • Siddiqui MA, Ahmed Z (2005) Mineralogy of the Swat kaolin deposits, Pakistan. Arab J Sci Eng 30:195–218

    CAS  Google Scholar 

  • Somani RH, Hsiao BS, Nogales A, Srinivas S, Tsou AH, Å ics I, Baltá-Calleja FJ, Ezquerra TA (2000) Structure development during shear flow-induced crystallization of i-PP: in-situ small-angle X-ray scattering study. Macromolecules 33:9385–9394

    Article  CAS  Google Scholar 

  • Somani RH, Hsiao BS, Nogales A, Fruitwala H, Srinivas S, Tsou AH (2001) Structure development during shear flow induced crystallization of i-PP: in situ wide-angle X-ray diffraction study. Macromolecules 34:5902–5909

    Article  CAS  Google Scholar 

  • Somwangthanaroj A, Lee EC, Solomon MJ (2003) Early stage quiescent and flow-induced crystallization of intercalated polypropylene nanocomposites by time-resolved light scattering. Macromolecules 36:2333–2342

    Article  CAS  Google Scholar 

  • Song BJ, Ahn JW, Cho KK, Roh JS, Lee DY, Yang YS, Lee JB, Hwang DY, Kim HS (2013) Electrical and mechanical properties as a processing condition in polyvinylchloride multi walled carbon nanotube composites. J Nanosci Nanotechnol 13:7723–7727

    Article  CAS  Google Scholar 

  • Sun T, Chen F, Dong C-X, Zhou Y, Wang D, Han CC (2009) Shear-induced orientation in the crystallization of an isotactic polypropylene nanocomposite. Polymer 50:2465–2471

    Article  CAS  Google Scholar 

  • Ting L, Shuangfei X, Piming M, Huiyu B, Weifu D, Mingqing C (2015) Nanocomposite hydrogel consisting of Na-montmorillonite with enhanced mechanical properties. J Polymer Sci B Polymer Phys 53(14):1020–1026

    Article  Google Scholar 

  • Uddin F (2008) Clays, nanoclays, and montmorillonite minerals. Metallur Mater Trans A 39A:2804–2814

    Article  CAS  Google Scholar 

  • Varlot K, Reynaud E, Kloppfer MH, Vigier G, Varlet J (2001) Clay-reinforced polyamide: preferential orientation of the montmorillonite sheets and the polyamide crystalline lamellae. J Polym Sci B Polym Phys 39:1360–1370

    Article  CAS  Google Scholar 

  • Wallace T, Center for Nanotechnology in Society, Arizona State University, Montmorillonite (MMT) Nanoclays in Ashpalt, [Online] Available from: https://nice.asu.edu/nano/montmorillonite-mmt-nanoclays-ashpalt [Accessed: 9th Sep 2015]

  • Wang K, Xiao Y, Na B, Tan H, Zhang Q, Fu Q (2005) Shear amplification and re-crystallization of isotactic polypropylene from an oriented melt in presence of oriented clay platelets. Polymer 46:9022–9032

    Article  CAS  Google Scholar 

  • Ward IM, Hine PJ (2004) The science & technology of hot compaction. Polymer 45:1413–1427

    Article  CAS  Google Scholar 

  • Wei W, Minullina R, Abdullayev E, Fakhrullin R, Mills D, Lvov Y (2014) Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RSC Adv 4:488–494

    Article  CAS  Google Scholar 

  • White HM, Bassett DC (1998) On row structures, secondary nucleation and continuity in a-polypropylene. Polymer 39:3211–3218

    Article  CAS  Google Scholar 

  • Wick P, Louw-Gaume AE, Kucki M, Krug HF, Kostarelos K, Fadeel B, Dawson KA, Salvati A, Vázquez E, Ballerini L, Tretiach M, Benfenati F, Flahaut E, Gauthier L, Prato M, Bianco A (2014) Classification framework for graphene-based materials. Angew Chem Int Ed 53:2–7

    Article  Google Scholar 

  • Wilder JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391:59–62

    Article  Google Scholar 

  • Yalcin B, Valladares D, Cakmak M (2003) Amplification effect of platelet type nanoparticles on the orientation behavior of injection molded nylon 6 composites. Polymer 44:6913–6925

    Article  CAS  Google Scholar 

  • You Z, Mills-Beale J, Foley JM, Roy S, Odegard GM, Dai Q, Goh SW (2011) Nanoclay-modified asphalt materials: preparation and characterization. Construct Build Mater 25:1072–1078

    Article  Google Scholar 

  • Zhang Q, Wang Y, Fu Q (2003) Shear-induced change of exfoliation and orientation in polypropylene/montmorillonite nanocomposites. J Polym Sci B Polym Phys 41:1–10

    Article  CAS  Google Scholar 

  • Zhang WD, Shen L, Phang IY, Liu T (2004) Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules 37:256–259

    Article  CAS  Google Scholar 

  • Zhao Y, Abdullayev E, Vasiliev A, Lvov YM (2013) Halloysite nanotubule clay for efficient water purification. J Coll Interface Sci 406:121–129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey R. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mitchell, G.R., Duraccio, D., Khan, I., Nogales, A., Olley, R. (2016). Crystallization in Nanocomposites. In: Mitchell, G., Tojeira, A. (eds) Controlling the Morphology of Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-39322-3_3

Download citation

Publish with us

Policies and ethics