Skip to main content

Block Copolymers and Photonic Band Gap Materials

  • Chapter
  • First Online:
Controlling the Morphology of Polymers

Abstract

Block copolymers are materials which consist of two or more polymer chains covalently bonded together in a single chain. In a similar way to polymer blends the two blocks may phase separate but the process is substantially different; structures are developed on length scales between 5 and 500 nm. The phase separation of the blocks gives rise to periodic structures with arrangements which depend on the nature of the polymer and the size of the blocks, and such materials offer the potential for a “bottom up” approach to the construction of structures on sub-micrometre scales. Block copolymers have a wide range of uses, however, the ability to produce repeating structure on sub-micrometre length scales has particularly attracted interest in their use as photonic and phononic band gap materials. In this chapter we discuss the origin of photonic band gaps, the synthesis of block copolymers, the connections between chemical structure and the large scale structures and the limitations and alternatives to these materials particularly with regard to their interactions with different wavelengths of light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Interestingly even protonated and deuterated polystyrene has been found to be incompatible at sufficiently high molecular weights (Bates et al. 1985).

  2. 2.

    This differs from the reflections observed from a standard mirror which relates to conductivity of the mirror’s tain (highly polished, reflective metal coating) and the abundance of mobile electrons; the electrons respond to an applied electromagnetic field by generating an equal and opposite electromagnetic field of their own, hence reflection is observed.

References

  • Albalak RJ, Thomas EL (1993) Microphase separation of block copolymer solutions in a flow field. J Polym Sci B Polym Phys 31:37–46

    Article  CAS  Google Scholar 

  • Anastasaki A, Waldron C, Wilson P, Boyer C, Zetterlund PB, Michael R, Whittaker MR, Haddleton D (2013) High molecular weight block copolymers by sequential monomer addition via Cu(0)-mediated living radical polymerization (SET-LRP): an optimized approach. ACS Macro Lett 2:896–900

    Article  CAS  Google Scholar 

  • Aragrag N (2010) Synthesis and characterisation of thermotropic liquid crystalline elastomers. PhD thesis, University of Reading

    Google Scholar 

  • Aragrag N, Castiglione DC, Davies PR, Davis FJ, Patel SI (2004) General procedures in chain-growth polymerization. In: Davis FJ (ed) Polymer chemistry: a practical approach. Oxford University Press, Oxford, pp 43–98. ISBN 9780198503095

    Google Scholar 

  • Baskaran D, Müller AHE (2007) Anionic vinyl polymerization—50 years after Michael Szwarc. Prog Polym Sci 32:173

    Article  CAS  Google Scholar 

  • Bates FS, Fredrickson GH (1999) Block copolymers—designer soft materials. Phys Today 52(2):32–38

    Article  CAS  Google Scholar 

  • Bates FS, Wignall GD, Koehler WC (1985) Critical-behavior of binary-liquid mixtures of deuterated and protonated polymers. Phys Rev Lett 55(22):2425–2428

    Article  CAS  Google Scholar 

  • Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KP, Fredrickson GH (2012) Multiblock polymers: panacea or Pandora’s box. Science 336:434–440

    Article  CAS  Google Scholar 

  • Bendiganavale AK, Malshe VC (2008) Infrared reflective inorganic pigments. Recent Pat Chem Eng 1:67–79

    Article  CAS  Google Scholar 

  • Bockstaller M, Kolb R, Thomas EL (2001) Metallodielectric photonic crystals based on diblock copolymers. Adv Mater 13:1783–1786

    Article  CAS  Google Scholar 

  • Brenner M, Chase FL, Leydon AJ (1972) Gasket-forming solvent-based com-positions containing styrene-butadiene block copolymers. U.S. Patent 3676386

    Google Scholar 

  • Busch K, John S (1999) Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum. Phys Rev Lett 83:967

    Article  CAS  Google Scholar 

  • Castiglione DC (2008) Block copolymer based photonic band gap materials. PhD thesis, University of Reading

    Google Scholar 

  • Christensen L (2002) HOME OF: the blue morpho butterfly. New York Times (12 May)

    Google Scholar 

  • Crossland RK, Harlan Jr, JT (1975) Block copolymer adhesive compositions. U.S. Patent 3917607

    Google Scholar 

  • Davis FJ, Mitchell GR (2008) Polyurethane based materials with applications in medical devices. In: Bártolo P, Bidanda B (eds) Bio-materials and prototyping applications in medicine. Springer, New York, pp 27–48. ISBN 9780387476827

    Chapter  Google Scholar 

  • Djiauw LK, Icenogle RD (1986) Low smoke modified polypropylene insulation compositions. U.S. Patent 4622352

    Google Scholar 

  • Dowling JP (1998) Mirror on the wall: you’re omnidirectional after all? Science 282:1841–1842

    Article  CAS  Google Scholar 

  • Fabian J, Nakazumi H, Matsuoka M (1992) Near-infrared absorbing dyes. Chem Rev 92:1197–1226

    Article  CAS  Google Scholar 

  • Fink Y, Urbas AM, Bawendi MG, Joannopoulos JD, Thomas EL (1999) Block copolymers as photonic bandgap materials. J Lightwave Technol 17(11):1963–1969

    Article  CAS  Google Scholar 

  • Fischer HJ (1999) The persistent radical effect in controlled radical polymerizations. Polym Sci A Polym Chem 37:1885–1901

    Article  CAS  Google Scholar 

  • Flemming JG, Lin SY, El-Kady I, Biswas R, Ho KM (2002) All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 417:52–55

    Article  Google Scholar 

  • Forsman A, Merilaita S (2003) Fearful symmetry? Intra-individual comparisons of asymmetry in signalling versus cryptic colour patterns in butterflies. Evol Ecol 17:491–507

    Article  Google Scholar 

  • Franta E, Hogen-Esch T, van Beylen M, Smid J (2007) Fifty years of living polymers. J Polym Sci A Polym Chem 45:2576–2579

    Article  CAS  Google Scholar 

  • Gody G, Maschmeyer T, Zetterlund PB, Perrier S (2014) Pushing the limit of the RAFT process: multiblock copolymers by one-pot rapid multiple chain extensions at full monomer conversion. Macromolecules 47:3451–3460

    Article  CAS  Google Scholar 

  • Hadjichristidis N, Iatrou H, Pispas S, Pitsikalis M (2000) Anionic polymerization: high vacuum techniques. J Polym Sci A Polym Chem 38:3211–3234

    Article  CAS  Google Scholar 

  • Hamley IW (2004) Developments in block copolymer science and technology. In: Hamley IW (ed). Wiley, Chichester

    Google Scholar 

  • Hayes W, Rannard S (2004) Polymer chemistry: a practical approach. 3. Controlled/‘living’ polymerization methods. Oxford University Press, Oxford, p 116

    Google Scholar 

  • Jacquemoud S, Frangi J-P, Govaerts Y, Ustin SL (1997) Three-dimensional representation of leaf anatomy—application of photon transport. In: Guyot G, Phulpin T (eds) Physical measurements & signatures in remote sensing. A.A. Balkema, Rotterdam, pp 295–302

    Google Scholar 

  • Jakubowski W, Kirci-Denizli B, Gil RR, Matyjaszewski K (2008) Polystyrene with improved chain-end functionality and higher molecular weight by ARGET ATRP. Macromol Chem Phys 209:32–39

    Article  CAS  Google Scholar 

  • John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486

    Article  CAS  Google Scholar 

  • Khandelwal H, Loonen RCGM, Hensen JLM, Schenning APHJ, Debije MG (2014) Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings. J Mater Chem A 2:14622–14627

    Article  CAS  Google Scholar 

  • Kharasch MS, Jensen EV, Urry WH (1945) Addition of carbon tetrachloride and chloroform to olefins. Science 102:128

    Article  CAS  Google Scholar 

  • Kraton Performance Polymers, Inc. http://www.kraton.com/about/history.php. Accessed May 2015

  • Lee J-H, Koh CY, Singer JP, Jeon S-J, Maldovan M, Stein O, Thomas EL (2014) 25th anniversary article: ordered polymer structures for the engineering of photons and phonons. Adv Mater 26:532–569

    Article  CAS  Google Scholar 

  • Li J, Wu Y, Fu J, Cong Y, Peng J, Han Y (2004) Reversibly strain-tunable elastomeric photonic crystals. Chem Phys Lett 390:285–289

    Article  CAS  Google Scholar 

  • Liebler L (1980) Theory of microphase separation in block copolymers. Macromolecules 13:1602–1617

    Article  Google Scholar 

  • Liguda C, Böttger G, Kuligk A, Blum R, Eich M, Roth H, Kunert J, Morgenroth W, Elsner H, Meyer HG (2001) Polymer photonic crystal slab waveguides. Appl Phys Lett 78:2434–2436

    Article  CAS  Google Scholar 

  • Matsen MW, Schick M (1994) Stable and unstable phases of a diblock copolymer melt. Phys Rev Lett 72:2660

    Article  CAS  Google Scholar 

  • Matsen MW, Bates FS (1996) Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29:1091

    Article  CAS  Google Scholar 

  • Minisci F (1975) Free-radical additions to olefins in the presence of redox systems. Acc Chem Res 8:165–171

    Article  CAS  Google Scholar 

  • Miyake GM, Raymond A, Weitekamp RA, Victoria A, Piunova VA, Grubbs RH (2012) Synthesis of isocyanate-based brush block copolymers and their rapid self-assembly to infrared-reflecting photonic crystals. J Am Chem Soc 2012(134):14249–14254

    Article  Google Scholar 

  • Morton M (1983) Anionic polymerization: principles & practice. Academic, New York

    Google Scholar 

  • Mueller L, Jakubowski W, Matyjaszewski K, Pietrasik J, Kwiatkowski P, Chaladaj W, Jurczak J (2011) Synthesis of high molecular weight polystyrene using AGET ATRP under high pressure. Eur Polym J 47:730–734

    Article  CAS  Google Scholar 

  • Ozin GA, Yang SM (2001) The race for the photonic chip: colloidal crystal assembly in silicon wafers. Adv Funct Mater 11:95

    Article  CAS  Google Scholar 

  • Painter O, Lee RK, Scherer A, Yariv A, O’Brian JD, Dapkus PD, Kim I (1999) Two-dimensional photonic band-gap defect mode laser. Science 284:1819–1821

    Article  CAS  Google Scholar 

  • Paul DE, Lipkin D, Weissman SI (1956) Reaction of sodium metal with aromatic hydrocarbons. J Am Chem Soc 78:116

    Article  CAS  Google Scholar 

  • Riess G (1999) Block copolymers as polymeric surfactants in latex and microlatex technology. Colloids Surf A Physiochem Eng Asp 153:99–110

    Article  CAS  Google Scholar 

  • Russell P (2003) Photonic crystal fibers. Science 299:358–362

    Article  CAS  Google Scholar 

  • Russell TP, Hjelm RP Jr, Seeger PA (1990) Temperature-dependence of the interaction parameter of polystyrene and poly(methyl methacrylate). Macromolecules 23:890

    Article  CAS  Google Scholar 

  • Saado Y, Ji T, Golosovsky M, Davidov D, Avni Y, Frenkel A (2001) Self-assembled heterostructures based on magnetic particles for photonic bandgap applications. Opt Mater 17:1–6

    Article  CAS  Google Scholar 

  • Saito A, Miyamura Y, Nakajima M, Ishikawa Y, Sogo K, Kuwahara Y, Hirai Y (2006) Reproduction of the Morpho blue by nanocasting lithography. J Vac Sci Technol B 24:3248

    Article  CAS  Google Scholar 

  • Simms RW, Cunningham MH (2008) High molecular weight poly(butyl methacrylate) via ATRP miniemulsions. Macromol Symp 2008(261):32–35

    Article  Google Scholar 

  • Starkey A (2005) The butterfly effect. New Sci 187:46

    Google Scholar 

  • Statz RJ, Chen JC, Hagman JF (2004) Highly-resilient thermoplastic elastomer compositions. U.S. Patent 6815480

    Google Scholar 

  • Stefik M, Guldin S, Vignolini S, Wiesner U, Steiner U (2015) Block copolymer self-assembly for nanophotonics. Chem Soc Rev 44:5076–5091

    Article  CAS  Google Scholar 

  • Szwarc M (1956) Living polymers. Nature 178:1168–1169

    Article  CAS  Google Scholar 

  • Szwarc M, Levy M, Milkovich R (1956) Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers. J Am Chem Soc 78:2656

    Article  CAS  Google Scholar 

  • Uhrig D, Mays JW (2005) Experimental techniques in high-vacuum anionic polymerization. J Polym Sci A Polym Chem 43:6179–6222

    Article  CAS  Google Scholar 

  • Urbas A, Fink Y, Thomas EL (1999) One-dimensionally periodic dielectric reflectors from self-assembled block copolymer-homopolymer blends. Macromolecules 32:4748–4750

    Article  CAS  Google Scholar 

  • Vengsarkar AM (1996) Long-period fiber grating shape optical spectra. Laser Focus World (June): 243–247

    Google Scholar 

  • Vukisic P, Sambles JR, Lawrence CR, Wootton RJ (1999) Quantified interference and diffraction in single Morpho butterfly scales. Proc R Soc Lond B 266:1403

    Article  Google Scholar 

  • Vukisic P, Sambles JR, Lawrence CR (2000) Structural colour: colour mixing in wing scales of a butterfly. Nature 404:457

    Article  Google Scholar 

  • Wuyts N, Palauqui J-C, Conejero G, Verdeil J-L, Granier C, Massonnet C (2010) High contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll. Plant Methods 6:17

    Article  Google Scholar 

  • Xia Y, Gates B, Park SH (1999) Fabrication of three-dimensional photonic crystals for use in the spectral region from ultraviolet to near-infrared. J Lightwave Technol 17:1956

    Article  CAS  Google Scholar 

  • Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059

    Article  CAS  Google Scholar 

  • Yablonovitch E (2001) Photonic crystals: semiconductors of light. Sci Am 285:46

    Article  CAS  Google Scholar 

  • Yang SM, Ozin GA (2000) Opal chips: vectorial growth of colloidal crystal patterns inside silicon wafers. Chem Commun 2507

    Google Scholar 

  • Yoon J, Lee W, Thomas EL (2005) Self-assembly of block copolymers for photonic bandgap materials. MRS Bull 30:721–726

    Article  CAS  Google Scholar 

  • Zhao J, Li X, Zhong L, Chen G (2009) Calculation of photonic band-gap of one dimensional photonic crystal. J Phys Conf Ser 183:012018

    Article  Google Scholar 

  • Zhou J, Sun CQ, Pita K, Lam YL, Zhou Y, Ng SL, Kam CH, Li LT, Gui ZL (2001) Thermally tuning of photonic band gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3. Appl Phys Lett 78:661–663

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario C. Castiglione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Castiglione, D.C., Davis, F.J. (2016). Block Copolymers and Photonic Band Gap Materials. In: Mitchell, G., Tojeira, A. (eds) Controlling the Morphology of Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-39322-3_10

Download citation

Publish with us

Policies and ethics