Skip to main content

MCDM Applied to the Partitioning Problem of 3D-Stacked Integrated Circuits

  • Chapter
  • First Online:

Part of the book series: Multiple Criteria Decision Making ((MCDM))

Abstract

In the past decades, the microelectronic industry has been following the Moore’s law to improve the performance of integrated circuits (IC). However, it will probably be impossible to follow this law in the future due to physical limitations appearing with the miniaturization of the transistors below a certain threshold without innovation. In order to overcome this problem, new technologies have emerged, and among them the 3D-Stacked Integrated Circuits (3D-SIC) have been proposed. 3D-SICs can bring numerous advantages in the design of future ICs but at the cost of additional design complexity due to their highly combinatorial nature, and the optimization of several conflicting criteria. Currently, most decisions about the production of a circuit are based on subjective considerations. In order to help designers facing choices when developing 3D chips, we present in this study an application of multi-criteria decision making (MCDM) tools, and more precisely the PROMETHEE methods, to the partitioning problem of 3D-SICs. Our work addresses two different production scenarios for the design of an OpenSPARC-T2 System-on-Chip. With this study, one can observe that multi-criteria analyzes can give to designers insights into the trade-off possibilities for the optimization of a circuit. In addition, the PROMETHEE methodology can help a designer facing choices and provide a transparent process when selecting a valid chip to develop. This shows that applying MCDM tools such as PROMETHEE to design 3D-SICs can indeed help designers to make a better use of this technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Al-Sarawi, S.F., Abbott, D., Franzon, P.D.: A review of 3-D packaging technology. IEEE Trans. Compon. Packag. Manuf. Technol. Part B: Adv. Packag. 21 (1), 2–14 (1998)

    Article  Google Scholar 

  2. Beece, A., Milojevic, D., van der Plas, G., Augur, R., Sureddin, M., Singh, J., Senapati, B., Bouche, G., Alapati, R., Stephens, J., Lin, I., Rashed, M., Yuan, L., Kye, J., Woo, Y., Wehbi, A., Hang, P., Ton-that, V., Kanagala, V., Yu, D., Gao, S., Samavedam, S.: Quantitative projections of the cost benefits of 3D integration. In: International Microelectronics Assembly and Packaging Society Proceedings (IMAPS 2015), October 2015

    Google Scholar 

  3. Beyne, E., Swinnen, B.: 3D system integration technologies. In: IEEE International Conference on Integrated Circuit Design and Technology, 2007. ICICDT ’07, pp. 1–3, May 2007

    Google Scholar 

  4. Borkar, S.: Design perspectives on 22 nm CMOS and beyond. In: Design Automation Conference, 2009. DAC ’09. 46th ACM/IEEE, pp. 93–94, July 2009

    Google Scholar 

  5. Brans, J.P., Mareschal, B., Vincke, Ph.: PROMETHEE: a new family of outranking methods in multicriteria analysis. In: Brans, J.P. (ed.) Operational Research, IFORS 84, pp. 477–490. North Holland, Amsterdam (1984)

    Google Scholar 

  6. Cringely, R.X.: Breaking Moore’s law @ONLINE (2013)

    Google Scholar 

  7. Cui, Y., Zhong, Z., Wang, D., Wang, W.U., Lieber, C.M.: High performance silicon nanowire field effect transistors. Nano Lett. 3 (2), 149–152 (2003)

    Article  Google Scholar 

  8. Das, S., Fan, A., Chen, K.-N., et al.: Technology, performance, and computer-aided design of three-dimensional integrated circuits. In: Proceedings of the 2004 International Symposium on Physical Design (ISPD ’04), pp. 108–115. https://dl.acm.org/citation.cfm?id=981091 (2004)

  9. Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State of the Art Surveys, vol. 78. Springer, New York (2005)

    Book  Google Scholar 

  10. Goldhaber-Gordon, D., Shtrikman, H., Mahalu, D., Abusch-Magder, D., Meirav, U., Kastner, M.A.: Kondo effect in a single-electron transistor. Nature 391 (6663), 156–159 (1998)

    Article  Google Scholar 

  11. Hayez, Q.: D-sight web @online (2015)

    Google Scholar 

  12. Hayez, Q., De Smet, Y., Bonney, J.: D-sight: a new decision making software to address multi-criteria problems. IJDSST 4 (4), 1–23 (2012)

    Google Scholar 

  13. Hu, Y.H., et al.: 3D stacking using Cu–Cu direct bonding. In: Conference on 3DIC, pp. 1–4 (2012)

    Google Scholar 

  14. Lee, Y.J., Morrow, P., Lim, S.K.: Ultra high density logic designs using transistor-level monolithic 3D integration. In: ICCAD, pp. 539–546 (2012)

    Google Scholar 

  15. Mallik, A., Horiguchi, N., B’́ommels, J., Thean, A., Barla, K., Vandenberghe, G., Ronse, K., Ryckaert, J., Mercha, A., Altimime, L., Verkest, D., Steegen, A.: The economic impact of EUV lithography on critical process modules. Proc. SPIE 9048, 90481R–90481R-12 (2014)

    Google Scholar 

  16. Mareschal, B., Brans, J.-P.: Geometrical representations for MCDA. Eur. J. Oper. Res. 34 (1), 69–77 (1988)

    Article  Google Scholar 

  17. Milojevic, D., Varadarajan, R., Seynhaeve, D., Marchal, P.: PathFinding and TechTuning in Three Dimensional System Integration (2011)

    Google Scholar 

  18. Or-Bach, Z.: Intel - The Litmus Test, June 2015

    Google Scholar 

  19. Patti, R.S.: Three-dimensional integrated circuits and the future of system-on-chip designs. Proc. IEEE 94 (6), 1214–1224 (2006)

    Article  Google Scholar 

  20. Priyadarshi, S., et al.: Hetero2: 3D integration: a scheme for optimizing efficiency/cost of chip multiprocessors. In: ISQED, pp. 1–7 (2013)

    Google Scholar 

  21. Tans, S.J., Verschueren, A.R.M., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393 (6680), 49–52 (1998)

    Article  Google Scholar 

  22. Velenis, D., Marinissen, E., Beyne, E.: Cost effectiveness of 3D integration options. In: Proceedings of the 3DIC, pp. 1–6 (2010)

    Google Scholar 

  23. Zhang, T., et al.: 3D-MMC: a modular 3D multi-core architecture with efficient resource pooling. In: DATE, pp. 1241–1246 (2013)

    Google Scholar 

  24. Zhirnov, V.V., Cavin III, R.K., Hutchby, J.A., Bourianoff, G.I.: Limits to binary logic switch scaling - a Gedanken model. Proc. IEEE 91 (11), 1934–1939 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Anh Vu Doan .

Editor information

Editors and Affiliations

Appendices

Appendix

OpenSPARC-T2 SoC Design Alternatives: Evaluation Table

Table 7

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Doan, N.A.V., Milojevic, D., De Smet, Y. (2017). MCDM Applied to the Partitioning Problem of 3D-Stacked Integrated Circuits. In: Zopounidis, C., Doumpos, M. (eds) Multiple Criteria Decision Making. Multiple Criteria Decision Making. Springer, Cham. https://doi.org/10.1007/978-3-319-39292-9_9

Download citation

Publish with us

Policies and ethics