Skip to main content

Towards a Classification of Compact Quantum Groups of Lie Type

  • Conference paper
Operator Algebras and Applications

Part of the book series: Abel Symposia ((ABEL,volume 12))

Abstract

This is a survey of recent results on classification of compact quantum groups of Lie type, by which we mean quantum groups with the same fusion rules and dimensions of representations as for a compact connected Lie group G. The classification is based on a categorical duality for quantum group actions recently developed by De Commer and the authors in the spirit of Woronowicz’s Tannaka–Krein duality theorem. The duality establishes a correspondence between the actions of a compact quantum group H on unital C-algebras and the module categories over its representation category \(\mathop{\mathrm{Rep}}\nolimits H\). This is further refined to a correspondence between the braided-commutative Yetter–Drinfeld H-algebras and the tensor functors from \(\mathop{\mathrm{Rep}}\nolimits H\). Combined with the more analytical theory of Poisson boundaries, this leads to a classification of dimension-preserving fiber functors on the representation category of any coamenable compact quantum group in terms of its maximal Kac quantum subgroup, which is the maximal torus for the q-deformation of G if q ≠ 1. Together with earlier results on autoequivalences of the categories \(\mathop{\mathrm{Rep}}\nolimits G_{q}\), this allows us to classify up to isomorphism a large class of quantum groups of G-type for compact connected simple Lie groups G. In the case of G = SU(n) this class exhausts all non-Kac quantum groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Banica, Fusion rules for representations of compact quantum groups, Exposition. Math. 17 (1999), no. 4, 313–337. MR 1734250 (2001g:46155)

    Google Scholar 

  2. A. A. Belavin and V. G. Drinfel’d, The classical Yang-Baxter equation for simple Lie algebras, Funktsional. Anal. i Prilozhen. 17 (1983), no. 3, 69–70. MR 714225 (85e:58059)

    Google Scholar 

  3. J. Bichon, A. De Rijdt, and S. Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), no. 3, 703–728. MR 2202309 (2007a:46072)

    Google Scholar 

  4. J. Bichon, S. Neshveyev, and M. Yamashita, Graded twisting of categories and quantum groups by group actions, preprint (2015), arXiv:1506.09194 [math.QA], to appear in Ann. Inst. Fourier.

    Google Scholar 

  5. J. Bichon, S. Neshveyev, and M. Yamashita, Graded twisting of comodule algebras and module categories, preprint (2016), arXiv:1604.02078 [math.QA].

    Google Scholar 

  6. D. Bisch, V. F. R. Jones, and Z. Liu, Singly generated planar algebras of small dimension, part III, preprint (2014), arXiv:1410.2876 [math.OA], to appear in Trans. Amer. Math. Soc.

    Google Scholar 

  7. M. D. Choi and E. G. Effros, Injectivity and operator spaces, J. Functional Analysis 24 (1977), no. 2, 156–209. MR 0430809 (55 3814)

    Google Scholar 

  8. K. De Commer and M. Yamashita, Tannaka-Kreĭn duality for compact quantum homogeneous spaces. I. General theory, Theory Appl. Categ. 28 (2013), No. 31, 1099–1138. MR 3121622

    Google Scholar 

  9. _________ , Tannaka–Kreĭn duality for compact quantum homogeneous spaces II. Classification of quantum homogeneous spaces for quantum SU(2), J. Reine Angew. Math. 708 (2015), 143–171. MR 3420332

    Google Scholar 

  10. V. G. Drinfel’d, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1060–1064, translation in Soviet Math. Dokl. 32 (1985), no. 1, 254–258. MR 802128 (87h:58080)

    Google Scholar 

  11. _________ , Quasi-Hopf algebras, Algebra i Analiz 1 (1989), no. 6, 114–148, translation in Leningrad Math. J. 1 (1990), no. 6, 1419–1457. MR 1047964 (91b:17016)

    Google Scholar 

  12. P. Etingof and S. Gelaki, Some properties of finite-dimensional semisimple Hopf algebras, Math. Res. Lett. 5 (1998), no. 1-2, 191–197. MR 1617921 (99e:16050)

    Google Scholar 

  13. _________ , The classification of triangular semisimple and cosemisimple Hopf algebras over an algebraically closed field, Internat. Math. Res. Notices 2000, no. 5, 223–234. MR 1747109 (2001h:16039)

    Google Scholar 

  14. H. Furstenberg, Boundary theory and stochastic processes on homogeneous spaces, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 193–229. MR 0352328 (50 4815)

    Google Scholar 

  15. F. Hiai and M. Izumi, Amenability and strong amenability for fusion algebras with applications to subfactor theory, Internat. J. Math. 9 (1998), no. 6, 669–722. MR 1644299 (99h:46116)

    Google Scholar 

  16. M. Izumi, Non-commutative Poisson boundaries and compact quantum group actions, Adv. Math. 169 (2002), no. 1, 1–57. MR 1916370 (2003j:46105)

    Google Scholar 

  17. M. Jimbo, A q-difference analogue of \(U(\mathfrak{g})\) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69. MR 797001 (86k:17008)

    Google Scholar 

  18. B. P. A. Jordans, A classification of SU(d)-type C-tensor categories, Internat. J. Math. 25 (2014), no. 9, 1450081, 40. MR 3266525

    Google Scholar 

  19. V. A. Kaĭmanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab. 11 (1983), no. 3, 457–490. MR 704539 (85d:60024)

    Google Scholar 

  20. D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. IV, J. Amer. Math. Soc. 7 (1994), no. 2, 383–453. MR 1239507 (94g:17049)

    Google Scholar 

  21. D. Kazhdan and H. Wenzl, Reconstructing monoidal categories, I. M. Gel’ fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 111–136. MR 1237835 (95e:18007)

    Google Scholar 

  22. M. B. Landstad, Ergodic actions of nonabelian compact groups, in: Ideas and methods in mathematical analysis, stochastics, and applications (Oslo, 1988), 365–388, Cambridge Univ. Press, Cambridge, 1992. MR 1190512 (93j:46072)

    Google Scholar 

  23. S. Mac Lane, Categories for the working mathematician, second ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872 (2001j:18001)

    Google Scholar 

  24. J. R. McMullen, On the dual object of a compact connected group, Math. Z. 185 (1984), no. 4, 539–552. MR 733774 (85e:22010)

    Google Scholar 

  25. S. Morrison, E. Peters, and N. Snyder, Categories generated by a trivalent vertex, preprint (2015), arXiv:1501.06869 [math.QA].

    Google Scholar 

  26. M. V. Movshev, Twisting in group algebras of finite groups, Funktsional. Anal. i Prilozhen. 27 (1993), no. 4, 17–23, 95; translation in Funct. Anal. Appl. 27 (1993), no. 4, 240–244 (1994). MR 1264314 (95a:16036)

    Google Scholar 

  27. M. Müger, On the center of a compact group, Int. Math. Res. Not. (2004), no. 51, 2751–2756. MR 2130607 (2005m:22003)

    Google Scholar 

  28. S. Neshveyev, Duality theory for nonergodic actions, Münster J. Math. 7 (2014), no. 2, 413–437.

    MathSciNet  MATH  Google Scholar 

  29. S. Neshveyev and L. Tuset, Notes on the Kazhdan-Lusztig theorem on equivalence of the Drinfeld category and the category of \(U_{q}\mathfrak{g}\) -modules, Algebr. Represent. Theory 14 (2011), no. 5, 897–948. MR 2832264 (2012j:17022)

    Google Scholar 

  30. _________ , On second cohomology of duals of compact groups, Internat. J. Math. 22 (2011), no. 9, 1231–1260. MR 2844801 (2012k:22010)

    Google Scholar 

  31. _________ , Autoequivalences of the tensor category of \(U_{q}\mathfrak{g}\) -modules, Int. Math. Res. Not. IMRN (2012), no. 15, 3498–3508. MR 2959039

    Google Scholar 

  32. _________ , Compact quantum groups and their representation categories, Cours Spécialisés [Specialized Courses], vol. 20, Société Mathématique de France, Paris, 2013. MR 3204665

    Google Scholar 

  33. S. Neshveyev and M. Yamashita, Categorical duality for Yetter-Drinfeld algebras, Doc. Math. 19 (2014), 1105–1139. MR 3291643

    Google Scholar 

  34. _________ , Poisson boundaries of monoidal categories, preprint (2014), arXiv:1405.6572 [math.OA].

    Google Scholar 

  35. _________ , Classification of non-Kac compact quantum groups of SU (n) type, Int. Math. Res. Not. (2015), pp. 36.

    Google Scholar 

  36. _________ , Twisting the q-deformations of compact semisimple Lie groups, J. Math. Soc. Japan 67 (2015), no. 2, 637–662. MR 3340190

    Google Scholar 

  37. R. Nest and C. Voigt, Equivariant Poincaré duality for quantum group actions, J. Funct. Anal. 258 (2010), no. 5, 1466–1503. MR 2566309

    Google Scholar 

  38. C. Ohn, Quantum SL (3, C )’s with classical representation theory, J. Algebra 213 (1999), no. 2, 721–756. MR 1673475 (2000c:17028)

    Google Scholar 

  39. _________ , Quantum \(\mathrm{SL}(3, \mathbb{C})\) ’s: the missing case, Hopf algebras in noncommutative geometry and physics, Lecture Notes in Pure and Appl. Math., vol. 239, Dekker, New York, 2005, pp. 245–255. MR 2106933 (2005h:20110)

    Google Scholar 

  40. V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), no. 2, 177–206. MR 1976459 (2004h:18006)

    Google Scholar 

  41. M. Pimsner and S. Popa, Finite-dimensional approximation of pairs of algebras and obstructions for the index, J. Funct. Anal. 98 (1991), no. 2, 270–291. MR 1111570 (92g:46076)

    Google Scholar 

  42. C. Pinzari, The representation category of the Woronowicz quantum group SμU (d) as a braided tensor C-category, Internat. J. Math. 18 (2007), no. 2, 113–136. MR 2307417 (2008k:46212)

    Google Scholar 

  43. C. Pinzari and J. E. Roberts, A duality theorem for ergodic actions of compact quantum groups on C-algebras, Comm. Math. Phys. 277 (2008), no. 2, 385–421. MR 2358289 (2008k:46203)

    Google Scholar 

  44. _________ , A rigidity result for extensions of braided tensor C-categories derived from compact matrix quantum groups, Comm. Math. Phys. 306 (2011), no. 3, 647–662. MR 2825504 (2012h:46125)

    Google Scholar 

  45. S. Popa, Classification of amenable subfactors of type II, Acta Math. 172 (1994), no. 2, 163–255. MR 1278111 (95f:46105)

    Google Scholar 

  46. M. A. Rieffel, Quantization and C-algebras, C-algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 66–97. MR 1292010 (95h:46108)

    Google Scholar 

  47. N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz 1 (1989), no. 1, 178–206, translation in Leningrad Math. J. 1 (1990), no. 1, 193—225. MR 1015339 (90j:17039)

    Google Scholar 

  48. P. Schauenburg, Turning monoidal categories into strict ones, New York J. Math. 7 (2001), 257–265 (electronic). MR 1870871 (2003d:18013)

    Google Scholar 

  49. Ya. S. Soĭbel’man, Irreducible representations of the algebra of functions on the quantum group SU (n) and Schubert cells, Dokl. Akad. Nauk SSSR 307 (1989), no. 1, 41–45, translation in Soviet Math. Dokl. 40 (1990), no. 1, 34–38. MR 1017083 (91d:17019)

    Google Scholar 

  50. _________ , Algebra of functions on a compact quantum group and its representations, Algebra i Analiz 2 (1990), no. 1, 190–212; translation in Leningrad Math. J. 2 (1991), no. 1, 161–178. MR 1049910 (91i:58053a)

    Google Scholar 

  51. R. Tomatsu, A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Comm. Math. Phys. 275 (2007), no. 1, 271–296. MR 2335776 (2008j:46058)

    Google Scholar 

  52. K.-H. Ulbrich, Fibre functors of finite-dimensional comodules, Manuscripta Math. 65 (1989), no. 1, 39–46. MR 1006625 (90e:16014)

    Google Scholar 

  53. A. Van Daele, Discrete quantum groups, J. Algebra 180 (1996), no. 2, 431–444. MR 1378538 (97a:16076)

    Google Scholar 

  54. A. Wassermann, Ergodic actions of compact groups on operator algebras. II. Classification of full multiplicity ergodic actions, Canad. J. Math. 40 (1988), no. 6, 1482–1527. MR 0990110 (92d:46168)

    Google Scholar 

  55. _________ , Ergodic actions of compact groups on operator algebras. I. General theory, Ann. of Math. (2) 130 (1989), no. 2, 273–319. MR 1014926 (91e:46092)

    Google Scholar 

  56. S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613–665. MR 901157 (88m:46079)

    Google Scholar 

  57. _________ , Twisted SU (2) group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), no. 1, 117–181. MR 890482 (88h:46130)

    Google Scholar 

  58. _________ , Tannaka-Kreĭn duality for compact matrix pseudogroups. Twisted SU (N) groups, Invent. Math. 93 (1988), no. 1, 35–76. MR 943923 (90e:22033)

    Google Scholar 

Download references

Acknowledgements

S.N. was supported by the European Research Council under the EuropeanUnion’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreementno. 307663.

M.Y. was supported by JSPS KAKENHI Grant Number 25800058, and partially by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Neshveyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Neshveyev, S., Yamashita, M. (2016). Towards a Classification of Compact Quantum Groups of Lie Type. In: Carlsen, T.M., Larsen, N.S., Neshveyev, S., Skau, C. (eds) Operator Algebras and Applications. Abel Symposia, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-39286-8_11

Download citation

Publish with us

Policies and ethics