Skip to main content

Delineation of Point Sources of Recharge in Karst Settings

  • Chapter
  • First Online:

Abstract

Karst, a geomorphic landscape that arises from the combination of high rock solubility and well developed subsurface drainage networks on rock types that are easily dissolved by water notably carbonate rocks such as limestone, dolomite or marble (Bretz 1942; Sweeting 1981; Jennings 1985; Palmer 1991, 2007; Bloom 1998; Klimchouk et al. 2000; Gunn 2004; Culver and White 2005; Ford and Williams 2007) and to a lesser extent evaporites such as gypsum, anhydrite and halite (Kozary et al. 1968; Klimchouk 2002; Johnson and Neal 2003; Ford and Williams 2007), constitutes 20–25 % of the earth’s land surface (Ford and William 2007; Bakalowicz 2005). These areas are regraded to represent the earth’s most diverse, scenic and resource-rich terrains with much of their wealth hidden underground including minerals, oil and natural gas, limestone quarries, apart from beautiful housing sites for urban development (Lamoreaux et al. 1993; Schmitz and Schroeder 2006). It is worldwide observed that nearly 40–50 % of the human population utilizes drinking water derived from karst aquifer systems, either directly or indirectly (Cost 1995; Ford and Williams 2007; Cooper et al. 2011; Brinkmann and Parise 2012). However, the unique hydrologic, geomorphologic and hydrogeologic features of karst (White 1988; Ford and Williams 2007; Palmer 2007; Parise and Gunn 2007) make these aquifers more vulnerable to pollution and contaminants (Drew and Hötzl 1999; Böhlke 2002; Parise and Pascali 2003; Bonacci 2004; Kovačič and Ravbar 2005; Ford and Williams 2007; Parise 2010).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araguas-Araguas, L., Froehlich, K. and Rozanski, K. (2000). Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Process., 14: 1341–1355.

    Article  Google Scholar 

  • Bakalowicz, M. (2005). Karst groundwater: A challenge for new resources. Hydrogeol. Jour., 13: 148–160.

    Article  CAS  Google Scholar 

  • Bloom, A.L. (1998). Karst and Speleology. In: Bloom, A.L., Geomorphology: A Systematic Analysis of Late Cenozoic Landforms. Prentice Hall, New Jersey.

    Google Scholar 

  • Bohlke, J.K. (2002). Groundwater recharge and agricultural contamination. Hydrogeol. Jour., 10: 153–179.

    Article  CAS  Google Scholar 

  • Bonacci, O. (2004). Hazards caused by natural and anthropogenic changes of catchment area in karst. Natural Hazards and Earth Sys. Sci., 4: 655–661.

    Article  Google Scholar 

  • Bretz, J.H. (1942). Vadose and phreatic features of limestone caverns. The Jour. of Geol., 50: 675–811.

    Article  Google Scholar 

  • Brinkmann, R. and Parise, M. (2012). Karst environments: Problems, management, human impacts, and sustainability – An introduction to the special issue. J. Cave Karst Stud., 74(2): 135–136.

    Article  Google Scholar 

  • Brinkmann, R., Wilson, K., Elko, N., Seale, L., Florea, L.J. and Vacher, H.L. (2007). Sinkhole distribution based on pre-development mapping in urbanized Pinellas County, Florida, USA. In: Parise, M. and Gunn, J. (eds), Natural and Anthropogenic Hazards in Karst Areas. Geol. Soc. of Lond.

    Google Scholar 

  • Clark, I.D. and Fritz, P. (1997). Environmental Isotopes in Hydrogeology. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Cooper, A.H., Farrant, A.R. and Price, S.J. (2011). The use of karst geomorphology for planning, hazard avoidance and development in Great Britain. Geomorphology, 134: 118–131.

    Article  Google Scholar 

  • COST action 65 (1995). Hydrogeological aspects of groundwater protection in karstic areas. Final COST action 65 report. Report EUR 16547, Directorate General of Research and Development, European Commission Office. Publication of European Communities, Luxembourg.

    Google Scholar 

  • Coward, J.M., Waltham, A.C. and Bowser, R.J. (1972). Karst springs in the valley of Kashmir. Jour. of Hydrol., 16: 213–223.

    Article  Google Scholar 

  • Culver, D.C. and White, W.B. (2005). Encyclopedia of Caves. Elsevier Academic Press, Amsterdam.

    Google Scholar 

  • Dansgaard, W. (1964). Stable Isotopes in precipitation. Tellus, 16: 436–467.

    Article  Google Scholar 

  • De Waele, J. and Follesa, R. (2004). Human impact on karst: The example of Lusaka (Zambia). International Jour. of Speleol., 32: 71–84.

    Article  Google Scholar 

  • Delle Rose, M., Parise, M. and Andriani, G.F. (2007). Evaluating the impact of quarrying on karst aquifers of Salento (southern Italy). In: Natural and anthropogenic Hazard in Karst Areas, Parise, M. and Gunn, J. (eds).

    Google Scholar 

  • Drew, D. and Hötzl, H. (1999). Karst Hydrogeology and Human Activities. Impacts, Consequences and Implications. Inter. Contri. to Hydrogeol. A.A. Balkeman.

    Google Scholar 

  • Epstein, S. and Mayeda, T. (1953). Variation of δ18O content in waters from natural sources. Geochem. Cosmochem. Acta., 4: 213–224.

    Article  CAS  Google Scholar 

  • Fleitmann, D., Burns, S.J., Neff, U., Mudelsee, M., Mangini, A. and Matter, A. (2004). Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman. Quatern. Sci. Rev., 23: 935–945.

    Article  Google Scholar 

  • Ford, D. and Williams, P. (2007). Karst hydrogeology and geomorphology. Wiley, Chichester.

    Book  Google Scholar 

  • Friedman, I., Smith, G.I., Gleason, J.D., Warden, A. and Harris, J.M. (1992). Stable isotope composition of waters in southeastern California, Part 1. Modern precipitation. J. Geophys. Res., 97: 5795–5812.

    Google Scholar 

  • Frumkin, A. (1999). Interaction between karst, water and agriculture over the climatic gradient of Israel. Int. J. Speleol., 26B(1/4): 99–110.

    Article  Google Scholar 

  • Gat, J.R. (2010). Isotopes Hydrology: A case study of the water cycle. Vol. 6. Imperial College Press.

    Google Scholar 

  • Giné, S.A. (1999). Agriculture, grazing and land use changes at the Serra de Tramuntana karstic mountains. Inter. Jour. of Speleol., 28B: 5–14.

    Article  Google Scholar 

  • Gunn, J. (1993a). The geomorphological impacts of limestone quarrying. In: Williams, P.W. (ed.), Karst terrains: Environmental changes and human impacts. Cremlingen-Destedt, Catena Verlag.

    Google Scholar 

  • Gunn, J. (2004). Encyclopedia of caves and karst science. Fitzroy Dearborn, New York.

    Google Scholar 

  • Gunn, J. (2007). Contributory zone definition for groundwater source protection and hazard mitigation in carbonate aquifers. In: Natural and anthropogenic hazard in karst areas. Parise, M. and Gunn, J. (eds). Geol. Soc. Lond., 279, 97–109.

    Article  CAS  Google Scholar 

  • Gunn, J. (1993b). The geomorphic impacts of limestone quarrying. In: Williams, P.W. (ed.), Karst terrains—Environmental changes and human impact. Catena Supplement 25, Catena Verlag, Cremlingen.

    Google Scholar 

  • IAEA (1967). Tritium and other environmental isotopes in the hydrological cycle. IAEA, Vienna. Tech. rep., 73.

    Google Scholar 

  • IAEA/WMO (1999). Global Network for Isotopes in Precipitation. The GNIP Database. <http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html.

  • Jeelani, G. (2005). Chemical quality of the spring waters of Anantnag, Kashmir. Jour. Geol. Soc. India, 66: 453–462.

    Google Scholar 

  • Jeelani, G. (2008). Aquifer response to regional climate variability in a part of Kashmir Himalaya in India. Hydrogeol. Jour., 16: 1625–1633.

    Article  CAS  Google Scholar 

  • Jennings, J.N. (1985). Karst geomorphology. Basil Blackwell, Oxford.

    Google Scholar 

  • Johnson, K.S. and Neal, J.T. (2003). Evaporite Karst and Engineering/Environmental Problems in the United States. Oklahoma Geol. Sur. Circular. 109.

    Google Scholar 

  • Kacaroglu, F. (1999). Review of groundwater pollution and protection in karst areas. Water Air Soil Pollution, 113: 337–356.

    Article  CAS  Google Scholar 

  • Käss, W. (1998). Tracing Technique in Geohydrology. Balkema, Rotterdam.

    Google Scholar 

  • Kendall, C. and McDonnell, J.J. (1998). Isotope Tracers in Catchment Hydrology. Science, B.V. (ed.). Elsevier, Amsterdam.

    Google Scholar 

  • Klimchouk, A. (2002). Subsidence Hazards in different Types of Karst: Evolutionary and speleogenetic Approach. Int. J. Speleol., 31(1/4): 5–18.

    Article  Google Scholar 

  • Klimchouk, A.B., Ford, D.C., Palmer, A.N. and Dreybrodt, W. (2000). Speleogenesis: Evolution of Karst Aquifers, Huntsville, A.L. National Speleological Society, Inc.

    Google Scholar 

  • Kovačič, G. and Ravbar, N. (2005). A review of the potential and actual sources of pollution to groundwater in selected karst areas in Slovenia. Natural Hazards and Earth Sys. Sci., 5/2: 225–233.

    Google Scholar 

  • Kozary, M.T., Dunlap, J.C. and Humphrey, W.E. (1968). Incidence of saline deposits in geologic time. Geol. Soc. of Amer., 88: 43–57.

    CAS  Google Scholar 

  • Lachniet, M.S. and Patterson, W.P. (2009). Oxygen isotope values of precipitation and surface waters in northern Central America (Belize and Guatemala) are dominated by temperature and amount effects. Earth Planet. Sc. Lett., 284: 435–446.

    Article  CAS  Google Scholar 

  • Langelier, Wilfred F., and Harvey F. Ludwig. “Graphical methods for indicating the mineral character of natural waters.” Journal (American Water Works Association) 34.3 (1942): 335–352.

    Google Scholar 

  • Lamoreaux, P., Assad, F. and McCarley, A. (1993). Annoted bibliography of karst terraines. Vol. 5. Inter. Contri. to Hydrogeol. (IAH) Hanover Heise.

    Google Scholar 

  • Lerch, R.N. (2011). Contaminant transport in two central Missouri karst recharge areas. Jour. of Cave and Karst Stud., 73(2): 99–113.

    Article  CAS  Google Scholar 

  • Middlemiss, C.S. (1910). Revision of Silurian-Trias sequence of Kashmir. Rec. Geol. Surv. India, 40: 206–260.

    Google Scholar 

  • Middlemiss, C.S. (1911). Sections in the Pir Panjal range and Sindh Valley, Kashmir. Rec. Geol. Surv. India, 1: 115–144.

    Google Scholar 

  • Mijatović, B. (1987). Catastrophic flood in the polje of Cetinje in February 1986: A typical example of the environmental impact of karst, Proceed. of the sec. multidisciplinary conf. on sinkholes and the environm. Impacts of karst, Orlando. Balkema, Rotterdam.

    Google Scholar 

  • Mook, W.G. (2000). Environmental isotopes in the hydrological cycle. In: Vol. I. Introduction. Mook, W.G. (ed.). Inter. Atomic Energy Agency, Groningen.

    Google Scholar 

  • Nicod, J. (1972). Pays et paysages du calcaire, Presses Universitaires de France, Paris, 242 pp.

    Google Scholar 

  • North, L.A., VanBeynen, P.E. and Parise, M. (2009). Interregional comparison of karst disturbance: West-central Florida and southeast Italy. Jour. of Environ. Management, 90(5): 1770–1781.

    Article  Google Scholar 

  • Palmer, A.N. (1991). Origin and morphology of caves. Geol. Soc. of Amer. Bullet., 103: 1–21.

    Article  Google Scholar 

  • Palmer, A.N. (2007). Cave geology. Cave Books, Dayton, OH.

    Google Scholar 

  • Parise, M. (2010). Hazards in karst. In: Bonacci, O. (ed.), Proc. Int. Interdisc. Conf. “Sustainability of the karst environment”, Plitvice Lakes (Croatia), 23–26 Sept. 2009, IHPUnesco, Series on Groundwater, 2, 155–162.

    Google Scholar 

  • Parise M. (2012). Management of water resources in karst environments, and negative effects of land use changes in the Murge area (Apulia, Italy). Karst Development. Vol 2(1).

    Google Scholar 

  • Parise, M. and Gunn, J. (2007). Natural and anthropogenic hazards in karst areas: Recognition, Analysis and Mitigation. Geol. Soc. Lond., 279.

    Google Scholar 

  • Parise, M. and Pascali, V. (2003). Surface and subsurface environmental degradation in the karst of Apulia (southern Italy). Environ. Geol., 44: 247–256.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944), A graphic procedure in the geochemical interpretation of water-analyses, Eos Trans. AGU, 25(6), 914–928, doi:10.1029/TR025i006p00914.

  • Rajmohan, N., Elango, L., Ramachandran, S. and Natarajan, M. (2000). Major ion correlation in groundwater of Kancheepuram region, south India. Indian J. Environ. Protection, 20(3): 188–193.

    CAS  Google Scholar 

  • Rozanski, K., Aruguas-Aruguas, L. and Ganfiantini, R. (1993). Isotopic patterns in modern global precipitation. Geophys. Monogr., 78: 1–36.

    Google Scholar 

  • Sauro, U. (1993). Human impact on the karst of the Venetian Fore-Alps, Italy. Environ. Geol., 21: 115–121.

    Google Scholar 

  • Sauro, U. (2006). Changes in the use of natural resources and human impact in the karst environment of the Venetian prealps (Italy). Jour. of Acta Carso., 35(2): 57–63.

    Google Scholar 

  • Schmitz, R. and Schroeder C. (2006). Urban site investigation in the Belgian karst belt. The Geol. Soc. of Lond.

    Google Scholar 

  • Schnegg, P.A. (2002). An inexpensive field Fluorometer for hydrogeological tracer tests with three tracers and turbidity measurement. Paper presented at the XXXII IAH and VI ALHSUD Congress “Groundwater and Human Development”, Mar del Plata, Argentina, 21–25.

    Google Scholar 

  • Schnegg, P.A. (2003). A new field fluorometer for multi-tracer tests and turbidity measurement applied to hydrogeological problems. Paper presented at the 8th Congress of International da Sociedade Brasileira de Geofísica, Rio de Janeiro, R J, Brasil.

    Google Scholar 

  • Schnegg, P.A. and Flynn, R.M. (2002). Online field fluorometers for hydrogeological tracer tests. In: Isotope und Tracer in der Wasserforschung, Technische Universität Bergakademie Freiberg, Wissenschaftliche Mitteilungen, Institut für Geologie., 19: 29–36.

    Google Scholar 

  • Smart, P.L. and Laidlaw, I.M.S. (1977). An evaluation of some fluorescent dyes for water tracing. Wat. Resour. Res., 13: 15–33.

    Article  CAS  Google Scholar 

  • Spizzico, M., Lopez, N. and Sciannamblo, D. (2005). Analysis of the potential contamination risk of groundwater resources circulating in areas with anthropogenic activities. Nat. Haz. Eart. Sys Sci., 5: 109–116.

    Article  Google Scholar 

  • Sweeting, M.M. (1981). Karst Geomorphology. In: Rhodes, W. and Fairbridge, C.U. (eds), Benchmark papers in geology, 59. Hutchinson Ross Publishing Company, Stroudsburg.

    Google Scholar 

  • UNESCO (2000). Groundwater pollution. International Hydrological Programme.

    Google Scholar 

  • Urich, P.B. (2002) Land use in karst terrain: Review of impacts of primary activities on temperate karst ecosystems. Sci. for Conser., 198: 60.

    Google Scholar 

  • Vesper, D.J., Loop, C.M. and White, W.B. (2001). Contaminant transport in karst aquifers: Speleogenesis and Evolution of Karst Aquifers. Theor. and Appl. Karstol., 1314: 101111.

    Google Scholar 

  • Wadia, D.N. (1975). Geology of India. Tata McGraw Hill, New Delhi.

    Google Scholar 

  • White, W.B. (1988). Geomorphology and hydrogeology of karst terrains. Oxford University Press, Oxford.

    Google Scholar 

  • Williams, P.W. (1993). Karst terrains: Environmental changes and human impact. In: NFZFG (eds). Catena Supplement 25, Catena Verlag, Cremlingen-Destedt.

    Google Scholar 

Download references

Acknowledgement

The authors are thankful to scientists from IAS, IAD, BARC, Mumbai and Dr. R.D. Deshpande from PRL, Ahmedabad for the isotope analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gh. Jeelani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Capital Publishing Company, New Delhi, India

About this chapter

Cite this chapter

Jeelani, G., Shah, R.A. (2017). Delineation of Point Sources of Recharge in Karst Settings. In: Kurisu, F., Ramanathan, A., Kazmi, A., Kumar, M. (eds) Trends in Asian Water Environmental Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-39259-2_17

Download citation

Publish with us

Policies and ethics