Skip to main content

Tracing the Significance of River for Arsenic Enrichment and Mobilization

  • Chapter
  • First Online:
Trends in Asian Water Environmental Science and Technology

Abstract

Arsenic contamination of groundwater has been found to be prominent in many of the flood plain regions of the world where recent Holocene sediments are predominant (Berg et al. 2008; Kumar et al. 2010; Shah 2010). Reductive hydrolysis of metal (hydr)oxides, particularly those of Fe has been found to be the dominant mode of As mobilization in groundwater of such regions (McArthur et al. 2001; Smedley and Kinniburgh 2002; Berg et al. 2008; Kumar et al. 2010). Some of the most well known regions with high groundwater As, where the aforementioned conditions have been detected are Bangladesh, India, Vietnam and Cambodia (Bhattacharya et al. 1997; Acharyya et al. 1999; Smedley and Kinniburgh 2002; Ahmed et al. 2004; Berg et al. 2007, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acharyya, S.K., Chakraborty, P., Lahiri, S., Raymahasay, B.C., Guha, S. and Bhowmik, A. (1999). Arsenic Poisoning in Ganges Delta. Nature, 401: 545.

    Google Scholar 

  • Ahmed, K.M., Bhattacharya, P., Hasan, M.A., Akhter, S.H., Alam, S.M.M., Bhuyan, M.A.H., Imam, M.B., Khan, A.A. and Sracek, O. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Appl. Geochem., 19(2): 181–200.

    Article  CAS  Google Scholar 

  • APHA. Standard methods for the examination of water and wastewater, (19th Ed.). American Public Health Association, Washington, D.C, 2005.

    Google Scholar 

  • Berg, M., Trang, P.T.K., Stengel, C., Buschmann, J., Viet, P.H., Dan, N.V., Giger. W. and Stüben, D. (2008). Hydrological and Sedimentary Controls Leading to Arsenic Contamination of Groundwater in the Hanoi Area, Vietnam: The Impact of Iron-Arsenic Ratios, Peat, River Bank Deposits, and Excessive Groundwater Abstraction. Chemical Geology, 249(1–2): 91–112.

    Google Scholar 

  • Berg, M., Stengel, C., Trang, P.T.K., Viet, P.H., Sampson, M.L., Leng, M., Samreth, S., Fredericks, D. Magnitude of Arsenic Pollution in the Mekong and Red River Deltas-Cambodia and Vietnam, The Science of the total environment, 372 (2–3), 413–425, 2007.

    Google Scholar 

  • Bhattacharya, P., Chatterjee, D. and Jacks, G. (1997). Occurrence of arsenic contamination of groundwater in alluvial aquifers from Delta Plain, Eastern India: Option for safe drinking supply. Int J Water Resour D., 13(1): 79–92.

    Article  Google Scholar 

  • Evans, P. (1964). The tectonic framework of Assam. Jour. Geol. Soc. India, 5: 80–96.

    Google Scholar 

  • Guidelines for Drinking-Water Quality, 2nd edition. WHO, Geneva, 1993.

    Google Scholar 

  • Halim, M.A., Majumder, R.K., Nessa, S.A., Hiroshiro, Y., Uddin, M.J., Shimadab, J. and Jinnoa, K. (2008). Hydrogeochemistry and Arsenic Contamination of Groundwater in the Ganges Delta Plain, Bangladesh. Journal of Hazardous Materials, 164(2–3): 1335–1345.

    Google Scholar 

  • Heroy, D.C., Kuehl, S.A. and Goodbred Jr. S.L. (2003). Mineralogy of the Ganges and Brahmaputra Rivers: Implications for river switching and Late Quaternary climate change. Sedimentary Geology, 155(3–4): 343–359.

    Google Scholar 

  • Huizing, H.G.J. (1971). A reconnaissance study of the mineralogy of sand fractions from East Pakistan sediments and soils. Geoderma., 6(2): 109–133.

    Article  CAS  Google Scholar 

  • Jain, K.S., Agarwal, P.K. and Singh, V.P. (2007). Hydrology and Water Resources of India, Water Sci and Technology Library. Springer, 57: 419–472.

    Google Scholar 

  • Kim, S.H., Kim, K., Ko, K.S., Kim, Y. and Lee, K.S. (2012). Co-Contamination of Arsenic and Fluoride in the Groundwater of Unconsolidated Aquifers under Reducing Environments. Chemosphere, 87(8): 851–856.

    Article  CAS  Google Scholar 

  • Kumar, Manish, Kumar, Pankaj, Ramanathan, A.L., Bhattacharya, Prosun, Thunvik, Roger, Singh, Umesh K., Tsujimura, M. and Sracek, O. (2010). Arsenic enrichment in groundwater in the middle Gangetic Plain of Ghazipur District in Uttar Pradesh, India. J. Geochem. Explor., 105(3): 83–94.

    Google Scholar 

  • Mahanta, C. (1995). Distribution of nutrients and toxic metals in the Brahmaputra River Basin. Ph.D thesis, Jawaharlal Nehru University, India.

    Google Scholar 

  • McArthur, J.M., Ravenscroft, P., Safiullah, S. and Thirlwall, M.F. (2001). Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research, 37(1): 109–117.

    Article  CAS  Google Scholar 

  • Piper, A.M. (1953). A graphic procedure in the chemical interpretation of water analysis. US Geol Surv Groundwater Note 12.

    Google Scholar 

  • Reza, A.H.M., Selim, Jean, J.S., Yang, H.J., Lee, M.K., Woodall, Brian, Liu, C.C., Lee, J.F. and Luo, S.D. (2010). Occurrence of Arsenic in Core Sediments and Groundwater in the Chapai-Nawabganj District, Northwestern Bangladesh. Water Research, 44(6): 2021–2037.

    Google Scholar 

  • Shah, B.A. (2010). Arsenic contaminated groundwater in Holocene sediments from parts of Middle Ganga Plain, Uttar Pradesh. Curr Sci., 98(10): 1359–1365.

    CAS  Google Scholar 

  • Singh, A.K. (2004). Arsenic Contamination in Groundwater of North Eastern India. Proceedings of National Seminar on Hydrology with Focal Theme on Water Quality. National Institute of Hydrology, Roorkee.

    Google Scholar 

  • Smedley, P.L. and Kinniburgh, D.G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem, 17(5): 517–568.

    Article  CAS  Google Scholar 

  • Wenzel, W.W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombic, Enzo and Adriano, D.C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta., 436(2): 309–323.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank the Department of Science and Technology (DST), under Govt. of India for funding the research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Capital Publishing Company, New Delhi, India

About this chapter

Cite this chapter

Kumar, M., Das, N., Sarma, K.P. (2017). Tracing the Significance of River for Arsenic Enrichment and Mobilization. In: Kurisu, F., Ramanathan, A., Kazmi, A., Kumar, M. (eds) Trends in Asian Water Environmental Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-39259-2_12

Download citation

Publish with us

Policies and ethics