Context-Aware Business Intelligence

  • Rafael BerlangaEmail author
  • Victoria Nebot
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 253)


Modern business intelligence (BI) is currently shifting the focus from the corporate internal data to external fresh data, which can provide relevant contextual information for decision-making processes. Nowadays, most external data sources are available in the Web presented under different media such as blogs, news feeds, social networks, linked open data, data services, and so on. Selecting and transforming these data into actionable insights that can be integrated with corporate data warehouses are challenging issues that have concerned the BI community during the last decade. Big size, high dynamicity, high heterogeneity, text richness and low quality are some of the properties of these data that make their integration much harder than internal (mostly relational) data sources. In this lecture, we review the major opportunities, challenges, and enabling technologies to accomplish the integration of external and internal data. We also introduce some interesting use case to show how context-aware data can be integrated into corporate decision-making.


Business Intelligence Context-awareness External data Linked open data 



This work has been funded by the Spanish Economy and Competitiveness Ministry (MINECO) with project contract TIN2014-55335-R.


  1. 1.
    Horkoff, J., Barone, D., Jiang, L., Yu, E.S.K., Amyot, D., Borgida, A., Mylopoulos, J.: Strategic business modeling: representation and reasoning. Softw. Syst. Model. 13(3), 1015–1041 (2014)CrossRefGoogle Scholar
  2. 2.
    Thompson, J.L., Martin, F.: Strategic management: Awareness & change. Cengage Learning EMEA (2010)Google Scholar
  3. 3.
    Meredith, R., O’Donnell, P.: A functional model of social media and its application to business intelligence. In: Proceedings of the 2010 Conference on Bridging the Socio-technical Gap in Decision Support Systems: Challenges for the Next Decade, Amsterdam, The Netherlands, pp. 129–140. IOS Press (2010)Google Scholar
  4. 4.
    Sarawagi, S.: Information extraction. Found. Trends Databases 1(3), 261–377 (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction for the web. IJCAI 7, 2670–2676 (2007)Google Scholar
  6. 6.
    Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E., Ciravegna, F.: Semantic annotation for knowledge management: requirements and a survey of the state of the art. Web Semant. Sci. Serv. Agents World Wide Web 4(1), 14–28 (2006)CrossRefGoogle Scholar
  7. 7.
    García-Moya, L., Kudama, S., Aramburu, M.J., Berlanga, R.: Storing and analysing voice of the market data in the corporate data warehouse. Inform. Syst. Front. 15(3), 331–349 (2013)CrossRefGoogle Scholar
  8. 8.
    Aggarwal, C.C., Zhai, C.: Mining Text Data. Springer Science & Business Media, New York (2012)CrossRefGoogle Scholar
  9. 9.
    Koudas, N., Sarawagi, S., Srivastava, D.: Record linkage: Similarity measures and algorithms. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, SIGMOD 2006, pp. 802–803. ACM, New York (2006)Google Scholar
  10. 10.
    Pavel, S., Euzenat, J.: Ontology matching: State of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)CrossRefGoogle Scholar
  11. 11.
    Pérez, J.M., Berlanga, R., Aramburu, M.J., Pedersen, T.B.: Integrating data warehouses with web data: a survey. IEEE Trans. Knowl. Data Eng. 20(7), 940–955 (2008)CrossRefGoogle Scholar
  12. 12.
    Abelló, A., Romero, O., Pedersen, T.B., Berlanga, R., Nebot, V., Cabo, M.J.A., Simitsis, A.: Using semantic web technologies for exploratory OLAP: a survey. IEEE Trans. Knowl. Data Eng. 27(2), 571–588 (2015)CrossRefGoogle Scholar
  13. 13.
    Bhide, M., Gupta, A., Gupta, R., Roy, P., Mohania, M.K., Ichhaporia, Z.: LIPTUS: associating structured and unstructured information in a banking environment. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, Beijing, China, June 12–14, 2007, pp. 915–924 (2007)Google Scholar
  14. 14.
    Bhide, M., Chakravarthy, V., Gupta, A., Gupta, H., Mohania, M.K., Puniyani, K., Roy, P., Roy, S., Sengar, V.S.: Enhanced business intelligence using EROCS. In: Proceedings of the 24th International Conference on Data Engineering, ICDE 2008, 7–12, April 2008, Cancún, México, pp. 1616–1619 (2008)Google Scholar
  15. 15.
    Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern Information Retrieval, vol. 463. ACM Press, New York (1999)Google Scholar
  16. 16.
    Pérez-Martínez, J.M., Berlanga, R., Aramburu, M.J., Pedersen, T.B.: Contextualizing data warehouses with documents. Decis. Support Syst. 45(1), 77–94 (2008)CrossRefGoogle Scholar
  17. 17.
    Croft, B., Lafferty, J.: Language Modeling for Information Retrieval, vol. 13. Springer Science & Business Media, New York (2013)zbMATHGoogle Scholar
  18. 18.
    Castellanos, M., Gupta, C., Wang, S., Dayal, U., Durazo, M.: A platform for situational awareness in operational BI. Decis. Support Syst. 52(4), 869–883 (2012)CrossRefGoogle Scholar
  19. 19.
    Berlanga, R., García-Moya, L., Nebot, V., Aramburu, M.J., Sanz, I., Llidó, D.M.: SLOD-BI: an open data infrastructure for enabling social business intelligence. IJDWM 11(4), 1–28 (2015)Google Scholar
  20. 20.
    Bizer, C.: The emerging web of linked data. IEEE Intell. Syst. 24(5), 87–92 (2009)CrossRefGoogle Scholar
  21. 21.
    Fernández, J.D., Llaves, A., Corcho, O.: Efficient RDF interchange (ERI) format for RDF data streams. In: Mika, P., et al. (eds.) ISWC 2014, Part II. LNCS, vol. 8797, pp. 244–259. Springer, Heidelberg (2014)Google Scholar
  22. 22.
    Balduini, M., Della Valle, E., Dell’Aglio, D., Tsytsarau, M., Palpanas, T., Confalonieri, C.: Social listening of city scale events using the streaming linked data framework. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 1–16. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 226–235. ACM, New York (2003)Google Scholar
  24. 24.
    Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review. SIGMOD Rec. 34(2), 18–26 (2005)CrossRefzbMATHGoogle Scholar
  25. 25.
    Calders, T., Dexters, N., Gillis, J.J.M., Goethals, B.: Mining frequent itemsets in a stream. Inf. Syst. 39, 233–255 (2014)CrossRefGoogle Scholar
  26. 26.
    Nebot, V., Berlanga, R.: Towards analytical MD stars from linked data. In: KDIR 2014 - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, Rome, Italy, 21–24 October, 2014, pp. 117–125 (2014)Google Scholar
  27. 27.
    Gallinucci, E., Golfarelli, M., Rizzi, S.: Advanced topic modeling for social business intelligence. Inf. Syst. 53, 87–106 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Universitat Jaume ICastellónSpain

Personalised recommendations