Design Issues in Social Business Intelligence Projects

  • Matteo GolfarelliEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 253)


With the term Social Business Intelligence we refer to a branch of Business Intelligence specialized in applying On-Line Analytical Processing analysis to User-Generated Contents collected from the Web and other sources of social information. The high dynamics of the domain as well as the nature of the source data, that are textual rather than numerical, require specific techniques both for modeling data and managing a project. Despite the increasing diffusion of Social Business Intelligence applications, only few works in the academic literature addressed such distinguishing features. In this paper we propose both a modeling technique and a methodology that enable the possibility of carrying out a more dynamic and expressive design in Social Business Intelligence projects. We also propose a set of experimental results on real data and real projects proving the effectiveness of our solutions.


Sentiment Analysis Domain Ontology Topic Table Ontology Design Star Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Castellanos, M., Dayal, U., Hsu, M., Ghosh, R., Dekhil, M., Lu, Y., Zhang, L., Schreiman, M.: LCI: a social channel analysis platform for live customer intelligence. In: Proceedings of SIGMOD, pp. 1049–1058 (2011)Google Scholar
  2. 2.
    Rehman, N., Mansmann, S., Weiler, A., Scholl, M.: Building a data warehouse for twitter stream exploration. In: Proceedings of ASONAM, pp. 1341–1348 (2012)Google Scholar
  3. 3.
    Zhang, D., Zhai, C., Han, J.: Topic cube: topic modeling for OLAP on multidimensional text databases. In: Proceedings of SDM, pp. 1123–1134 (2009)Google Scholar
  4. 4.
    García-Moya, L., Kudama, S., Aramburu, M.J., Llavori, R.B.: Storing and analysing voice of the market data in the corporate data warehouse. Inf. Syst. Front. 15(3), 331–349 (2013)CrossRefGoogle Scholar
  5. 5.
    Gallinucci, E., Golfarelli, M., Rizzi, S.: Meta-stars: multidimensional modeling for social business intelligence. In: Proceedings of DOLAP, pp. 11–18 (2013)Google Scholar
  6. 6.
    Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 415–463. Springer, New York (2012)CrossRefGoogle Scholar
  7. 7.
    Bravo-Marquez, F., Mendoza, M., Poblete, B.: Meta-level sentiment models for big social data analysis. Knowl. Based Syst. 69, 86–99 (2014)CrossRefGoogle Scholar
  8. 8.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008)CrossRefGoogle Scholar
  9. 9.
    Lee, J., Grossman, D.A., Frieder, O., McCabe, M.C.: Integrating structured data and text: a multi-dimensional approach. In: Proceedings of ITCC, pp. 264–271 (2000)Google Scholar
  10. 10.
    Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Top_keyword: an aggregation function for textual document OLAP. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 55–64. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    García-Moya, L., Kudama, S., Aramburu, M., Berlanga, R.: Storing and analysing voice of the market data in the corporate data warehouse. Inf. Syst. Front. 15(3), 331–349 (2013)CrossRefGoogle Scholar
  12. 12.
    Dayal, U., Gupta, C., Castellanos, M., Wang, S., Garcia-Solaco, M.: Of Cubes, DAGs and hierarchical correlations: a novel conceptual model for analyzing social media data. In: Cheung, D., Ram, S., Atzeni, P. (eds.) ER 2012 Main Conference 2012. LNCS, vol. 7532, pp. 30–49. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of EMNLP, vol. 10, pp. 79–86 (2002)Google Scholar
  14. 14.
    Taboada, M., Brooke, J., Tofiloski, M., Voll, K.D., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)CrossRefGoogle Scholar
  15. 15.
    Pedersen, T.B., Jensen, C.S., Dyreson, C.E.: A foundation for capturing and querying complex multidimensional data. Inf. Syst. 26(5), 383–423 (2001)CrossRefzbMATHGoogle Scholar
  16. 16.
    Gallinucci, E., Golfarelli, M., Rizzi, S.: Advanced topic modeling for social business intelligence. Inf. Syst. 53, 87–106 (2015)CrossRefGoogle Scholar
  17. 17.
    Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd edn. Wiley, New York (2013)Google Scholar
  18. 18.
    Golfarelli, M., Rizzi, S.: Data Warehouse Design: Modern Principles and Methodologies. McGraw-Hill, New York (2009)Google Scholar
  19. 19.
    Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema versioning in data warehouses: enabling cross-version querying via schema augmentation. Data Knowl. Eng. 59(2), 435–459 (2006)CrossRefGoogle Scholar
  20. 20.
    Francia, M., Golfarelli, M., Rizzi, S.: A methodology for social BI. In: Proceedings IDEAS, pp. 207–216 (2014)Google Scholar
  21. 21.
    Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)CrossRefGoogle Scholar
  22. 22.
    Robson, C.: Real World Research. Blackwell, Oxford (2002)Google Scholar
  23. 23.
    Mullen, T., Collier, N.: Sentiment analysis using support vector machines with diverse information sources. In: EMNLP, vol. 4, pp. 412–418 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.DISIUniversity of BolognaBolognaItaly

Personalised recommendations