Skip to main content

The Role of Vascular Epiphytes in the Ecosystem

  • Chapter
  • First Online:
Plants on Plants – The Biology of Vascular Epiphytes

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

The previous chapter, which focused on the biotic interactions of epiphytes with other organisms found in tree canopies, identified an important role of epiphytes for animal abundance and diversity. This chapter is concerned with the role of epiphytes in ecosystem carbon, water, and nutrient pools and fluxes. The impact of epiphytes on ecosystem processes is expected to be largest in wet montane systems, in which they may attain up to 10,000 kg biomass ha−1. Even in these systems, however, pool size is not a good predictor of the relative contribution of epiphytes to fluxes. For one, epiphytes typically have lower capacity for net CO2 uptake than co-occurring trees and are also more affected by water shortage. Together, this should lead to a much smaller contribution to carbon fluxes than expected by total biomass. The role of vascular epiphytes in forest hydrology cannot be deduced from biomass either and is much smaller than that of co-occurring nonvascular epiphytes, particularly of mosses and liverworts. The contribution of vascular epiphytes to nutrient stores is higher than expected from their biomass, but it remains unclear how this relates to fluxes. Epiphytes do modify nutrient fluxes in the ecosystem, but the magnitude of this effect is largely unknown. The answer should depend on the chosen temporal and spatial scale. Thus, whether epiphytes generate a net gain for their host trees or, alternatively, scavenge nutrients to a degree that the trees are negatively affected is a central yet currently unresolved question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benner JW, Vitousek PM (2007) Development of a diverse epiphyte community in response to phosphorus fertilization. Ecol Lett 10:628–636

    Article  PubMed  Google Scholar 

  • Benzing DH, Seemann J (1978) Nutritional piracy and host decline: a new perspective on the epiphyte-host relationship. Selbyana 2:133–148

    Google Scholar 

  • Boelter CR, Dambros CS, Nascimento HEM, Zartman CE (2014) A tangled web in tropical tree-tops: effects of edaphic variation, neighbourhood phorophyte composition and bark characteristics on epiphytes in a central Amazonian forest. J Veg Sci 25:1090–1099. doi:10.1111/jvs.12154

    Article  Google Scholar 

  • Caballero-Rueda LM, Rodríguez N, Martin C (1997) Dinamica de elementos en epifitos de un bosque altoandino de la Cordillera Oriental de Colombia. Caldasia 19:311–322

    Google Scholar 

  • Cavelier J, Goldstein G (1989) Mist and fog interception in elfin cloud forests in Colombia and Venezuela. J Trop Ecol 5:309–322

    Article  Google Scholar 

  • Cavelier J, Jaramillo M, Solis D, de Leon D (1997) Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest in Panama. J Hydrol 193:83–96

    Article  CAS  Google Scholar 

  • Chen L, Liu WY, Wang GS (2010) Estimation of epiphytic biomass and nutrient pools in the subtropical montane cloud forest in the Ailao Mountains, south-western China. Ecol Res 25:315–325. doi:10.1007/s11284-009-0659-5

    Article  Google Scholar 

  • Clark KL, Nadkarni NM, Schaefer D, Gholz HL (1998) Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. J Trop Ecol 14:27–45

    Article  Google Scholar 

  • Díaz IA, Sieving KE, Peña-Foxon ME, Larraín J, Armesto JJ (2010) Epiphyte diversity and biomass loads of canopy emergent trees in Chilean temperate rain forests: A neglected functional component. For Ecol Manag 259:1490–1501. doi:10.1016/j.foreco.2010.01.025

    Article  Google Scholar 

  • Edwards PJ, Grubb PJ (1977) Studies of mineral cycling in a montane rainforest in New Guinea I. The distribution of organic matter in the vegetation and soil. J Ecol 65:943–969

    Article  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Budel B, Andreae MO, Poschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen., Nature Geosci 5:459–462

    Google Scholar 

  • Fleischbein K, Wilcke W, Goller R, Boy J, Valarezo C, Zech W, Knoblich K (2005) Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties. Hydrol Process 19:1355–1371

    Article  Google Scholar 

  • Frahm J-P (1990) Bryophyte phytomass in tropical ecosystems. Bot J Linn Soc 104:23–33

    Article  Google Scholar 

  • Frangi JL, Lugo AE (1985) Ecosystem dynamics of a subtropical floodplain forest. Ecol Monogr 55:351–369

    Article  Google Scholar 

  • Freiberg M (2001) The influence of epiphyte cover on branch temperature in a tropical tree. Plant Ecol 153:241–250

    Article  Google Scholar 

  • Freiberg M, Freiberg E (2000) Epiphyte diversity and biomass in the canopy of lowland and montane forests in Ecuador. J Trop Ecol 16:673–688

    Article  Google Scholar 

  • Golley FB, McGinnis JT, Clements RG, Child GI, Duever MJ (1969) The structure of tropical forests in Panama and Colombia. Bioscience 19:693–696

    Article  CAS  Google Scholar 

  • Grubb PJ, Edwards PJ (1982) Studies of mineral cycling in a montane rainforest in New Guinea. III. The distribution of mineral elements in the above-ground material. J Ecol 70:623–648

    Article  CAS  Google Scholar 

  • Herbert DA (1958) Natural air layering in humus-collecting epiphytes. Queensland Nat 16:22–23

    Google Scholar 

  • Hietz P, Hietz-Seifert U (1995) Composition and ecology of vascular epiphyte communities along an altitudinal gradient in central Veracruz, Mexico. J Veg Sci 6:487–498

    Article  Google Scholar 

  • Hietz P, Wanek W, Wania R, Nadkarni NM (2002) Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia 131:350–355

    Article  Google Scholar 

  • Hofstede RGM, Wolf JHD, Benzing DH (1993) Epiphytic biomass and nutrient status of a Colombian upper montane rain forest. Selbyana 14:37–45

    Google Scholar 

  • Hölscher D, Köhler L, van Dijk A, Bruijnzeel LA (2004) The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. J Hydrol 292:308–322

    Article  Google Scholar 

  • Holwerda F, Bruijnzeel LA, Barradas VL, Cervantes J (2013) The water and energy exchange of a shaded coffee plantation in the lower montane cloud forest zone of central Veracruz, Mexico. Agric For Meteorol 173:1–13. doi:10.1016/j.agrformet.2012.12.015

    Article  Google Scholar 

  • Hsu C-C, Horng F-W, Kuo C-M (2002) Epiphyte biomass and nutrient capital of a moist subtropical forest in north-eastern Taiwan. J Trop Ecol 18:659–670

    Article  Google Scholar 

  • Inselsbacher E, Cambui CA, Richter A, Stange CF, Mercier H, Wanek W (2007) Microbial activities and foliar uptake of nitrogen in the epiphytic bromeliad Vriesea gigantea. New Phytol 175:311–320

    Article  CAS  PubMed  Google Scholar 

  • Jetten VG (1996) Interception of tropical rain forest: performance of a canopy water balance model. Hydrol Process 10:671–685

    Article  Google Scholar 

  • Kanzaki M, Sri-ngernyuang K (2012) Diversity and dynamics of epiphyte, hemiepiphyte, and parasite in tropical forests of Doi Inthanon National Park (2008-2012). National Research Council of Thailand

    Google Scholar 

  • Klinge H, Rodriguez WA, Bruning E, Fittkau EJ (1975) Biomass and structure in a Central Amazonian rain forest. In: Golley FB, Medina E (eds) Tropical ecological systems, vol 11, Ecological Studies. Springer, Berlin, pp 115–122

    Chapter  Google Scholar 

  • Knops JMH, Nash TH, Schlesinger WH (1996) The influence of epiphytic lichens on the nutrient cycling of an oak woodland. Ecol Monogr 66:159–179

    Article  Google Scholar 

  • Köhler L, Tobón C, Frumau KFA, Bruijnzeel LAS (2007) Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica. Plant Ecol 193:171–184

    Article  Google Scholar 

  • Köhler L, Hölscher D, Bruijnzeel LA, Leuschner C (2010) Epiphyte biomass in Costa Rican old-growth and secondary montane rain forests and its hydrological significance. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Cambridge University Press, New York, pp 268–274

    Google Scholar 

  • Leuzinger S, Haettenschwiler S (2013) Beyond global change: lessons from 25 years of CO2 research. Oecologia 171:639–651. doi:10.1007/s00442-012-2584-5

    Article  PubMed  Google Scholar 

  • Levia DF, Frost EE (2006) Variability of throughfall volume and solute inputs in wooded ecosystems. Progr Phys Geogr 30:605–632

    Article  Google Scholar 

  • Matelson TJ, Nadkarni NM, Longino JT (1993) Longevity of fallen epiphytes in a neotropical montane forest. Ecology 74:265–269

    Article  Google Scholar 

  • Munoz-Villers LE, Hólwerda F, Gómez-Cardenas M, Equihua M, Asbjornsen H, Bruijnzeel LA, Marin-Castro BE, Tobon C (2012) Water balances of old-growth and regenerating montane cloud forests in central Veracruz, Mexico. J Hydrol 462:53–66. doi:10.1016/j.jhydrol.2011.01.062

    Article  Google Scholar 

  • Murphy PG, Lugo AE (1986) Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica 18:89–96

    Article  Google Scholar 

  • Nadkarni NM (1981) Canopy roots: convergent evolution in rainforest nutrient cycles. Science 214:1023–1024

    Article  CAS  PubMed  Google Scholar 

  • Nadkarni NM (1984a) Biomass and mineral capital of epiphytes in an Acer macrophyllum community of a temperate moist coniferous forest, Olympic Peninsula, Washington State (USA). Can J Bot 62:2223–2228

    Article  CAS  Google Scholar 

  • Nadkarni NM (1984b) Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica 16:249–256

    Article  Google Scholar 

  • Nadkarni NM, Matelson TJ (1991) Fine litter dynamics within the tree canopy of a tropical cloud forest. Ecology 72:2071–2082

    Article  Google Scholar 

  • Nadkarni NM, Matelson TJ (1992) Biomass and nutrient dynamics of epiphytic litterfall in a neotropical montane forest, Costa Rica. Biotropica 24:24–30

    Article  Google Scholar 

  • Nadkarni NM, Schaefer D, Matelson TJ, Solano R (2004) Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. For Ecol Manag 198:223–236

    Article  Google Scholar 

  • Oliveira RR (2004) The importance of epiphytic bromeliads on the turnover of nutrients at the Atlantic Rain Forest. Acta Bot Bras 18:793–799

    Article  Google Scholar 

  • Orlovich DA, Draffin SJ, Daly R, Stephenson SL (2013) Piracy in the high trees: ectomycorrhizal fungi from an aerial “canopy soil” microhabitat. Mycologia 105:52–60. doi:10.3852/11-307

    Article  PubMed  Google Scholar 

  • Oyarzun CE, Godoy R, Staelens J, Donoso PJ, Verhoest NEC (2011) Seasonal and annual throughfall and stemflow in Andean temperate rainforests. Hydrol Process 25:623–633. doi:10.1002/hyp.7850

    Article  Google Scholar 

  • Paulian R (1951) Caractères des sols suspendus de forêts tropicales. Année Biologique 27:279–280

    Google Scholar 

  • Pérez CA, Guevara R, Carmona MR, Armesto JJ (2005) Nitrogen mineralization in epiphytic soils of an old-growth Fitzroya cupressoides forest, southern Chile. Ecoscience 12:210–215

    Article  Google Scholar 

  • Petean MP (2009) As epífitas vasculares em uma área de floresta Ombrófila Densa em Antonina. Paraná. PhD thesis, Universidade Federal do Paraná, Curibita

    Google Scholar 

  • Pócs T (1980) The epiphytic biomass and its effect on the water balance of two rain forest types in the Uluguru Mountains (Tanzania, East Africa). Acta Bot Acad Sci Hung 26:143–167

    Google Scholar 

  • Reynolds BC, Hunter MD (2004) Nutrient cycling. In: Lowman MD, Rinker BH (eds) Forest Canopies, 2nd edn. Elsevier, San Diego, pp 387–396

    Chapter  Google Scholar 

  • Richardson BA, Richardson MJ, Scatena FN, McDowell WH (2000) Effects of nutrient availability and other elevational changes on bromeliad populations and their invertebrate communities in a humid tropical forest in Puerto Rico. J Trop Ecol 16:167–188

    Article  Google Scholar 

  • Sillett SC, Van Pelt R (2007) Trunk reiteration promotes epiphytes and water storage in an old-growth redwood forest canopy. Ecol Monogr 77:335–359

    Article  Google Scholar 

  • Socher LG, Roderjan CV, Galvão F (2008) Biomassa aérea de uma Floresta Ombrófila Mista Aluvial no município de Araucária (PR). Floresta 38:245–252

    Article  Google Scholar 

  • Stadtmüller T (1987) Los bosques nublados en el trópico húmedo. Universidad de las Naciones Unidas, Tokio

    Google Scholar 

  • Stanton DE, Chavez JH, Villegas L, Villasante F, Armesto JJ, Hedin LO, Horn HH (2014) Epiphytes improve host plant water use by microenvironment modification. Funct Ecol 28:1274–1283. doi:10.1111/1365-2435.12249

    Article  Google Scholar 

  • Stuntz S, Simon U, Zotz G (2002) Rainforest airconditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns. Int J Biometeorol 46:53–59

    Article  PubMed  Google Scholar 

  • Sugden AM (1986) The montane vegetation and flora of Margarita Island, Venezuela. J Arnold Arboretum 67:187–232

    Google Scholar 

  • Tanner EVJ (1980) Studies on the biomass and productivity in a series of montane rain forests in Jamaica. J Ecol 68:573–588

    Article  Google Scholar 

  • Umana NHN, Wanek W (2010) Large canopy exchange fluxes of inorganic and organic nitrogen and preferential retention of nitrogen by epiphytes in a tropical lowland rainforest. Ecosystems 13:367–381. doi:10.1007/s10021-010-9324-7

    Article  Google Scholar 

  • Van Stan IIJT, Pypker TG (2015) A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Sci Total Environ 536:813–824. doi:10.1016/j.scitotenv.2015.07.134

    Article  PubMed  Google Scholar 

  • Vance ED, Nadkarni NM (1990) Microbial biomass and activity in canopy organic matter and the forest floor of a tropical cloud forest. Soil Biol Biochem 22:677–684

    Article  CAS  Google Scholar 

  • Veneklaas EJ, Van Ek R (1990) Rainfall interception in two tropical montane rain forests, Colombia. Hydrol Process 4:311–326

    Article  Google Scholar 

  • Veneklaas EJ, Zagt RJ, Van Leerdam A, Van Ek R, Broekhoven AJ, Van Genderen M (1990) Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio 89:183–192

    Article  Google Scholar 

  • Waide RB, Zimmerman JK, Scatena FN (1998) Controls of primary productivity: lessons from the Luquillo Mountains in Puerto Rico. Ecology 79:31–37

    Article  Google Scholar 

  • Walker R, Ataroff M (2002) Biomasa epífita y su contenido de nutrientes en una selva nublada andina, Venezuela. Ecotropicos 15:203–210

    Google Scholar 

  • Wallace J, McJannet D (2013) How might Australian rainforest cloud interception respond to climate change? J Hydrol 481:85–95. doi:10.1016/j.jhydrol.2012.12.028

    Article  Google Scholar 

  • Weaver PL (1972) Cloud moisture interception in the Luquillo Mountains of Puerto Rico. Carib J Sci 12:129–144

    Google Scholar 

  • Weaver PL, Murphy PG (1990) Forest structure and productivity in Puerto Rico's Luquillo Mountains. Biotropica 22:69–82. doi:10.2307/2388721

    Article  Google Scholar 

  • Werner FA, Homeier J, Oesker M, Boy J (2012) Epiphytic biomass of a tropical montane forest varies with topography. J Trop Ecol 28:23–31. doi:10.1017/S0266467411000526

    Article  Google Scholar 

  • Whitmore TC (1984) Tropical rain forests of the Far East, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Zotz G (2004) How prevalent is crassulacean acid metabolism among vascular epiphytes? Oecologia 138:184–192

    Article  PubMed  Google Scholar 

  • Zotz G, Winter K (1993) Short-term photosynthesis measurements predict leaf carbon balance in tropical rainforest canopy plants. Planta 191:409–412

    Article  CAS  Google Scholar 

  • Zotz G, Winter K (1996) Seasonal changes in daytime versus nighttime CO2 fixation of Clusia uvitana in situ. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Ecological Studies. Springer, Berlin, pp 312–323

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zotz, G. (2016). The Role of Vascular Epiphytes in the Ecosystem. In: Plants on Plants – The Biology of Vascular Epiphytes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-39237-0_9

Download citation

Publish with us

Policies and ethics