Skip to main content

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Plant physiological ecology (or plant ecophysiology), the topic of this chapter, is concerned with the physiological properties of species in the context of their natural environment. It is impossible to paint a simple picture of the physiology of the “typical” epiphyte because of the large variation in abiotic conditions which epiphytes face when, e.g., growing in the humid, shaded understory as compared to fully exposed conditions in the outermost regions of the forest canopy. Apart from a certain capacity to cope with intermittent water supply and mostly low nutrient input, it is hard to come up with a unifying theme. Similar to the previous treatise of functional anatomy and morphology of epiphytic plants, the basic goal of this chapter is to discuss the most important physiological traits determining growth, survival, and reproductive output in the epiphytic habitat without entirely neglecting interesting “special cases.” Based on a solid review of current knowledge, I identify promising directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander C, Alexander IJ, Hadley G (1984) Phosphate uptake by Goodyera repens in relation to mycorrhizal infection. New Phytol 97:401–411

    Article  CAS  Google Scholar 

  • Alkarawi HH, Zotz G (2014) Phytic acid in green leaves. Plant Biol 16:697–701

    Article  CAS  Google Scholar 

  • Allen MT, Pearcy RW (2000) Stomatal behavior and photosynthetic performance under dynamic light regimes in a seasonally dry tropical rain forest. Oecologia 122:470–478

    Article  Google Scholar 

  • Andrade JL (2003) Dew deposition on epiphytic bromeliad leaves: an important event in a Mexican tropical dry deciduous forest. J Trop Ecol 19:479–488

    Article  Google Scholar 

  • Andrade JL, Nobel PS (1996) Habitat, CO2 uptake, and growth for the CAM epiphytic cactus Epiphyllum phyllanthus in a Panamanian tropical forest. J Trop Ecol 12:291–306

    Article  Google Scholar 

  • Andrade JL, Nobel PS (1997) Microhabitats and water relations of epiphytic cacti and ferns in a lowland neotropical forest. Biotropica 29:261–270

    Article  Google Scholar 

  • Andrade-Souza V, Almeida AAF, Correa RX, Costa MA, Mielke MS, Gomes FP (2009) Leaf carbon assimilation and molecular phylogeny in Cattleya species (Orchidaceae). Genet Mol Res 8:976–989. doi:10.4238/vol8-3gmr618

    Article  CAS  PubMed  Google Scholar 

  • Awasthi OP, Sharma IK, Palni LMS (1995) Stemflow: a source of nutrients in some naturally growing epiphytic orchids of the Sikkim Himalaya. Ann Bot 75:5–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bader MY, Menke G, Zotz G (2009) A pronounced drought tolerance characterizes the early life stages of the epiphytic bromeliad Tillandsia flexuosa. Funct Ecol 23:472–479

    Article  Google Scholar 

  • Ball E, Hann J, Kluge M, Lee HSJ, Lüttge U, Orthen B, Popp M, Schmitt A, Ting IP (1991) Ecophysiological comportment of the tropical CAM-tree Clusia in the field. I. Growth of Clusia rosea Jacq. on St. John, US. Virgin Islands, Lesser Antilles. New Phytol 117:473–481

    Article  Google Scholar 

  • Barker DH, Adams WW III, Demmig-Adams B, Logan BA, Verhoeven AS, Smith SD (2002) Nocturnally retained zeaxanthin does not remain engaged in a state primed for energy dissipation during the summer in two Yucca species in the Mojave Desert. Plant Cell Environ 25:95–103

    Article  CAS  Google Scholar 

  • Barthlott W, Porembski S, Seine R, Theisen I (1987) The curious world of carnivorous plants: a comprehensive guide to their biology and cultivation. Timber Press, Portland

    Google Scholar 

  • Bayman P, González EJ, Fumero JJ, Tremblay RL (2002) Are fungi necessary? How fungicides affect growth and survival of the orchid Lepanthes rupestris in the field. J Ecol 90:1002–1008

    Google Scholar 

  • Bazzaz FA (1996) Plants in changing environments. Cambridge University Press, Cambridge

    Google Scholar 

  • Benner JW, Vitousek PM (2007) Development of a diverse epiphyte community in response to phosphorus fertilization. Ecol Lett 10:628–636

    Article  PubMed  Google Scholar 

  • Benzing DH (1970) Foliar permeability and the absorption of minerals and organic nitrogen by certain tank bromeliads. Bot Gaz 131:23–31

    Article  CAS  Google Scholar 

  • Benzing DH (1978) The nutritional status of three Encyclia tampensis (Orchidaceae) populations in Southern Florida as compared with that of Tillandsia circinnata (Bromeliaceae). Selbyana 2:224–229

    Google Scholar 

  • Benzing DH (1980) The biology of bromeliads. Mad River Press, Eureka, CA

    Google Scholar 

  • Benzing DH (1987) The origin and rarity of botanical carnivory. Trends Ecol Evol 2:364–369

    Article  Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. General biology and related biota. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Benzing DH (1998) Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Clim Change 39:519–540

    Article  Google Scholar 

  • Benzing DH (2000) Bromeliaceae—profile of an adaptive radiation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Benzing DH (2012) Air plants. Cornell University, Ithaca, NY

    Google Scholar 

  • Benzing DH, Dahle CE (1971) The vegetative morphology, habitat preference and water balance mechanisms of the Bromeliad Tillandsia ionantha Planch. Am Midl Nat 85:11–21

    Google Scholar 

  • Benzing DH, Davidson EA (1979) Oligotrophic Tillandsia circinnata Schlecht. (Bromeliaceae): an assessment of its patterns of mineral allocation and reproduction. Am J Bot 66:386–397

    Article  Google Scholar 

  • Benzing DH, Ott DW (1981) Vegetative reduction in epiphytic Bromeliaceae and Orchidaceae: its origin and significance. Biotropica 13:131–140

    Article  Google Scholar 

  • Benzing DH, Pockman WT (1989) Why do nonfoliar green organs of leafy orchids fail to exhibit net photosynthesis? Lindleyana 4:53–60

    Google Scholar 

  • Benzing DH, Renfrow A (1974a) The mineral nutrition of Bromeliaceae. Bot Gaz 135:281–288

    Article  CAS  Google Scholar 

  • Benzing DH, Renfrow A (1974b) The nutritional status of Encyclia tampense and Tillandsia circinnata on Taxodium ascendens and the availability of nutrients to epiphytes on this host in South Florida. Bull Torrey Bot Club 101:191–197

    Article  Google Scholar 

  • Benzing DH, Friedman WE, Peterson G, Renfrow A (1983) Shootlessness, velamentous roots, and the pre-eminence of Orchidaceae in the epiphytic biotope. Am J Bot 70:121–133

    Article  Google Scholar 

  • Bermudes D, Benzing DH (1989) Fungi in neotropical epiphyte roots. BioSystems 23:65–73

    Article  CAS  PubMed  Google Scholar 

  • Bewley JD, Krochko JE (1982) Desiccation-tolerance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Encyclopedia of plant physiology, vol 12B. New series. Springer, New York, pp 325–378

    Google Scholar 

  • Biebl R (1964) Zum Wasserhaushalt von Tillandsia recurvata L. und Tillandsia usneoides L. auf Puerto Rico. Protoplasma 58:345–368

    Article  CAS  Google Scholar 

  • Black M, Bewley JD, Halmer P (eds) (2006) The encyclopedia of seeds. CAB International, Wallingford

    Google Scholar 

  • Blüthgen N, Schmit-Neuerburg V, Engwald S, Barthlott W (2001) Ants as epiphyte gardeners—comparing the nutrient quality of ant and termite substrates in a Venezuelan lowland rain forest. J Trop Ecol 17:887–894

    Article  Google Scholar 

  • Bone RE, Smith JAC, Arrigo N, Buerki S (2015) A macro-ecological perspective on crassulacean acid metabolism (CAM) photosynthesis evolution in Afro-Madagascan drylands: Eulophiinae orchids as a case study. New Phytol 208:469–481. doi:10.1111/nph.13572

    Google Scholar 

  • Brighigna L, Montaini P, Favilli F, Trejo AC (1992) Role of the nitrogen-fixing bacterial microflora in the epiphytism of Tillandsia (Bromeliaceae). Am J Bot 79:723–727

    Article  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Cardelús CL, Mack M (2010) The nutrient status of epiphytes and their host trees along an elevational gradient in Costa Rica. Plant Ecol 207:25–37. doi:10.1007/s11258-009-9651-y

    Article  Google Scholar 

  • Cardelús C, Mack M, Woods C, DeMarco J, Treseder K (2009) The influence of tree species on canopy soil nutrient status in a tropical lowland wet forest in Costa Rica. Plant and Soil 318:47–61

    Article  CAS  Google Scholar 

  • Carrias JF, Cereghino R, Brouard O, Pelozuelo L, Dejean A, Coute A, Corbara B, Leroy C (2014) Two coexisting tank bromeliads host distinct algal communities on a tropical inselberg. Plant Biol 16:997–1004. doi:10.1111/plb.12139

    Google Scholar 

  • Castro-Hernández JC, Wolf JHD, García-Franco JG, González-Espinosa M (1999) The influence of humidity, nutrients and light on the establishment of the epiphytic bromeliad Tillandsia guatemalensis in the highlands of Chiapas, Mexico. Rev Biol Trop 47:763–773

    Google Scholar 

  • Cea MG, Claverol S, Castillo CA, Pinilla CR, Ramírez LB (2014) Desiccation tolerance of Hymenophyllaceae filmy ferns is mediated by constitutive and non-inducible cellular mechanisms. C R Biol 337:235–243

    Article  Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Chazdon RL, Fetcher N (1984) Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. J Ecol 72:553–564

    Article  Google Scholar 

  • Chen L, Liu WY, Wang GS (2010) Estimation of epiphytic biomass and nutrient pools in the subtropical montane cloud forest in the Ailao Mountains, south-western China. Ecol Res 25:315–325. doi:10.1007/s11284-009-0659-5

    Article  Google Scholar 

  • Chuyong GB, Newbery DM, Songwe NC (2004) Rainfall input, throughfall and stemflow of nutrients in a central African rain forest dominated by ectomycorrhizal trees. Biogeochemistry 67:73–91

    Article  CAS  Google Scholar 

  • Clark KL, Nadkarni NM, Schaefer D, Gholz HL (1998) Cloud water and precipitation chemistry in a tropical montane forest, Monteverde, Costa Rica. Atmos Environ 32:1595–1603

    Article  CAS  Google Scholar 

  • Cockburn W, Goh CJ, Avadhani PN (1985) Photosynthetic carbon assimilation in a shootless orchid, Chiloschista usneoides (DON) LDL: a variant on crassulacean acid metabolism. Plant Physiol 77:83–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in wet tropics. Science 322:258–261. doi:10.1126/science.1162547

    Article  CAS  PubMed  Google Scholar 

  • Correa S, Zotz G (2014) The influence of collecting date, temperature and moisture regimes on the germination of epiphytic bromeliads. Seed Sci Res 24:353–363. doi:10.1017/S0960258514000312

    Article  Google Scholar 

  • Crayn DM, Winter K, Smith JAC (2004) Multiple origins of crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proc Natl Acad Sci USA 101:3703–3708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crayn DM, Winter K, Schulte K, Smith JAC (2015) Photosynthetic pathways in Bromeliaceae: phylogenetic and ecological significance of CAM and C3 based on carbon isotope ratios for 1893 species. Bot J Linn Soc 178:169–221. doi:10.1111/boj.12275

    Google Scholar 

  • Curtis JT (1946) Nutrient supply of epiphytic orchids in the mountains of Haiti. Ecology 27:264–266

    Article  Google Scholar 

  • Davies-Colley RJ, Payne GW, van Elswijk M (2000) Microclimate gradients across a forest edge. N Z J Ecol 24:111–121

    Google Scholar 

  • De Santo VA, Alfani A, De Luca P (1976) Water vapour uptake from the atmosphere by some Tillandsia species. Ann Bot 40:391–394

    Google Scholar 

  • Dueker J, Arditti J (1968) Photosynthetic 14CO2 fixation by green Cymbidium (Orchidaceae) flowers. Plant Physiol 43:130–132. doi:10.1104/pp.43.1.130

    Google Scholar 

  • Earnshaw MJ, Winter K, Ziegler H, Stichler W, Cruttwell NEG, Kerenga K, Cribb PJ, Wood J, Croft JR, Carver KA, Gunn TC (1987) Altitudinal changes in the incidence of crassulacean acid metabolism in vascular epiphytes and related life forms in Papua New Guinea. Oecologia 73:566–572

    Article  Google Scholar 

  • Edwards PJ, Grubb PJ (1977) Studies of mineral cycling in a montane rainforest in New Guinea I. The distribution of organic matter in the vegetation and soil. J Ecol 65:943–969

    Article  Google Scholar 

  • Einzmann HJR, Beyschlag J, Hofhansl F, Wanek W, Zotz G (2015) Host tree phenology affects vascular epiphytes at the physiological, demographic and community level. AoB Plants 7:plu073

    Article  CAS  Google Scholar 

  • Endres L, Mercier H (2003) Amino acid uptake and profile in bromeliads with different habits cultivated in vitro. Plant Physiol Biochem 41:181–187

    Article  CAS  Google Scholar 

  • Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126

    Article  CAS  PubMed  Google Scholar 

  • Feild TS, Dawson TE (1998) Water sources used by Didymopanax pittieri at different life stages in a tropical cloud forest. Ecology 79:1448–1452

    Article  Google Scholar 

  • Fiore MF, Sant’Anna CL, Azevedo MTP, Komarek J, Kastovsky J, Sulek J, Lorenzi AS (2007) The cyanobacterial genus Brasilonema, gen. nov., a molecular and phenotypic evaluation. J Phycol 43:789–798. doi:10.1111/j.1529-8817.2007.00376.x

    Google Scholar 

  • Fisher BL, Zimmerman JK (1988) Ant/orchid associations in the Barro Colorado National Monument, Panama. Lindleyana 3:12–16

    Google Scholar 

  • Frank JH, Curtis GA (1981) Bionomics of the bromeliad-inhabiting mosquito Wyeomyia vanduzeei and its nursery plant Tillandsia utriculata. Flo Entomol 64:491–506

    Article  Google Scholar 

  • Frank JH, Omeara GF (1984) The bromeliad Catopsis berteroniana traps terrestrial arthropods but harbors Wyeomyia larvae (Diptera, Culicidae). Fl Entymol 67:418–424. doi:10.2307/3494721

    Article  Google Scholar 

  • Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2:561–570. doi:10.1038/ismej.2008.14

    Article  PubMed  CAS  Google Scholar 

  • Gay H (1993) Animal-fed plants: an investigation into the uptake of ant-derived nutrients by the far-eastern epiphytic fern Lecanopteris Reinw. (Polypodiaceae). Biol J Linn Soc 50:221–233

    Article  Google Scholar 

  • Geber MA, Dawson TE (1997) Genetic variation in stomatal and biochemical limitations to photosynthesis in the annual plant, Polygonum arenastrum. Oecologia 109:535–546

    Article  Google Scholar 

  • Gegenbauer C, Meyer V, Zotz G, Richter A (2012) Uptake of ant-derived nitrogen in the myrmecophytic orchid Caularthron bilamellatum. Ann Bot 110:757–765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gentry AH, Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Ann Mo Bot Gard 74:205–233

    Article  Google Scholar 

  • Gessner F (1956) Der Wasserhaushalt der Epiphyten und Lianen. In: Stocker O (ed) Pflanze und Wasser, vol 3, Handbuch der Pflanzenphysiologie. Springer, Berlin, pp 915–950

    Google Scholar 

  • Gill AM, Tomlinson PB (1977) Studies on the growth of red mangrove (Rhizophora mangle L.) 4: the adult root system. Biotropica 9:145–155. doi:10.2307/2387877

    Google Scholar 

  • Gilmartin AJ (1983) Evolution of mesic and xeric habitats in Tillandsia and Vriesea (Bromeliaceae). Syst Bot 8:233–242

    Article  Google Scholar 

  • Gradstein SR, Obregon A, Gehrig C, Bendix J (2010) Tropical lowland cloud forest: a neglected forest type. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Cambridge University Press, New York, pp 130–133

    Google Scholar 

  • Graham EA, Andrade JL (2004) Drought tolerance associated with vertical stratification of two co-occurring epiphytic bromeliads in a tropical dry forest. Am J Bot 91:699–706

    Article  PubMed  Google Scholar 

  • Green TGA, Lange OL (1994) Photosynthesis in poikilohydric plants: a comparison of lichens and bryophytes. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis, vol 100, Ecological studies. Springer, Berlin, pp 319–341

    Google Scholar 

  • Griffiths H, Maxwell K (1999) In memory of C. S. Pittendrigh: does exposure in forest canopies relate to photoprotective strategies in epiphytic bromeliads? Funct Ecol 13:15–23

    Article  Google Scholar 

  • Griffiths H, Lüttge U, Stimmel KH, Crook CE, Griffiths NM, Smith JAC (1986) Comparative ecophysiology of CAM and C3 bromeliads. III. Environmental influences on CO2 assimilation and transpiration. Plant Cell Environ 9:385–393

    Article  Google Scholar 

  • Griffiths H, Smith JAC, Lüttge U, Popp M, Cram WJ, Diaz MA, Lee HSL, Medina E, Schäfer C, Stimmel KH (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. IV. Tillandsia flexuosa Sw. and Schomburgkia humboldtiana Reichb., epiphytic CAM plants. New Phytol 111:273–282

    Article  CAS  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Grime JP, Hunt R (1975) Relative growth rate: its range and adaptive significance in a local flora. J Ecol 63:393–422

    Article  Google Scholar 

  • Grubb PJ (1977) Maintenance of species-richness in plant communities: importance of regeneration niche. Biol Rev 52:107–145

    Article  Google Scholar 

  • Grubb PJ, Edwards PJ (1982) Studies of mineral cycling in a montane rainforest in New Guinea. III. The distribution of mineral elements in the above-ground material. J Ecol 70:623–648

    Google Scholar 

  • Guo WJ, Lee N (2006) Effect of leaf and plant age, and day/night temperature on net CO2 uptake in Phalaenopsis anabilis var. formosa. J Am Soc Hortic Sci 131:320–326

    Google Scholar 

  • Haberlandt GFJ (1914) Physiological plant anatomy. Macmillan, London

    Google Scholar 

  • Halbinger C (1941) Hardy and beautiful Mexican Laelias. Am Orch Soc Bull 10:31–32

    Google Scholar 

  • Hall J (1958) How the native bromeliads took the cold in Florida. Brom Soc Bull 8:6–7

    Google Scholar 

  • Hancock JF, Pritts MP (1987) Does reproductive effort vary across different life forms and serial environments? A review of the literature. Bull Torrey Bot Club 114:53–59

    Article  Google Scholar 

  • Harbrecht A (1941) Untersuchungen über die Ionenaufnahme der Bromeliaceen. Jahrb Wiss Bot 90:25–81

    CAS  Google Scholar 

  • Helbsing S, Riederer M, Zotz G (2000) Cuticles of vascular epiphytes: efficient barriers for water loss after stomatal closure? Ann Bot 86:765–769

    Article  Google Scholar 

  • Herrera P, Suárez JP, Kottke I (2010) Orchids keep the ascomycetes outside: a highly diverse group of ascomycetes colonizing the velamen of epiphytic orchids from a tropical mountain rainforest in Southern Ecuador. Mycology 1:262–268. doi:10.1080/21501203.2010.526645

    Google Scholar 

  • Hertel D, Köhler L (2010) Are tree roots in the canopy ecologically important? A critical reassessment from a case study in a tropical montane rainforest. Plant Ecol Divers 3:141–150. doi:10.1080/17550874.2010.511293

    Article  Google Scholar 

  • Herwitz SR (1991) Aboveground adventitious roots and stemflow chemistry of Ceratopetalum virchowii in an Australian montane tropical rain-forest. Biotropica 23:210–218

    Article  Google Scholar 

  • Hew CS, Ye QS, Pan RC (1991) Relation of respiration of CO2 fixation by Aranda orchid roots. Environ Exp Bot 31:327–331

    Google Scholar 

  • Hietz P, Briones O (2004) Adaptaciones y bases fisiológicas de la distribución de los helechos epífitos en un bosque de niebla. In: Cabrera HM (ed) Fisiología Ecológica en Plantas. Ediciones Universitarias de Valparaíso, Valparaíso, pp 121–138

    Google Scholar 

  • Hietz P, Hietz-Seifert U (1995) Structure and ecology of epiphyte communities of a cloud forest in central Veracruz, Mexico. J Veg Sci 6:719–728

    Article  Google Scholar 

  • Hietz P, Wanek W, Popp M (1999) Stable isotopic composition of carbon and nitrogen, and nitrogen content in vascular epiphytes along an altitudinal transect. Plant Cell Environ 22:1435–1443

    Article  Google Scholar 

  • Hietz P, Wanek W, Wania R, Nadkarni NM (2002) Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia 131:350–355

    Article  Google Scholar 

  • Hofstede RGM, Wolf JHD, Benzing DH (1993) Epiphytic biomass and nutrient status of a Colombian upper montane rain forest. Selbyana 14:37–45

    Google Scholar 

  • Holbrook NM, Putz FE (1996) Water relations of epiphytic and terrestrially-rooted strangler figs in Venezuelan palm savanna. Oecologia 106:424–431

    Article  Google Scholar 

  • Huxley CR (1980) Symbiosis between ants and epiphytes. Biol Rev 55:321–340

    Article  Google Scholar 

  • Ibisch PL, Kessler M, Barthlott W (2000) On the ecology, biogeography and diversity of the Bolivian epiphytic cacti. Bradleya 18:2–30

    Google Scholar 

  • Inselsbacher E, Cambui CA, Richter A, Stange CF, Mercier H, Wanek W (2007) Microbial activities and foliar uptake of nitrogen in the epiphytic bromeliad Vriesea gigantea. New Phytol 175:311–320

    Article  CAS  PubMed  Google Scholar 

  • Kaul RB (1977) Role of multiple epidermis in foliar succulence of Peperomia (Piperaceae). Bot Gaz 138:213–218. doi:10.1086/336917

    Google Scholar 

  • Kellman M, Hudson J, Sanmugadas K (1982) Temporal variability in atmospheric nutrient influx to a tropical ecosystem. Biotropica 14:1–9

    Article  Google Scholar 

  • Khasim SM, Rao Mahona PR (1984) Structure and function of the velamen-exodermis complex in some epiphytic orchids. Geobios New Rep 3:133–136

    Google Scholar 

  • Kivlin SN, Emery SM, Rudgers JA (2013) Fungal symbionts alter plant responses to global change. Am J Bot 100:1445–1457. doi:10.3732/ajb.1200558

    Article  PubMed  Google Scholar 

  • Klinge H (1963) Über Epiphytenhumus aus El Salvador. Zentralamerika II Kennzeichnung des Humus durch analytische Merkmale. Pedobiologia 2:102–107

    Google Scholar 

  • Körner C (1994) Leaf diffusive conductances in the major vegetation types of the globe. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis, vol 100, Ecological studies. Springer, Berlin, pp 463–490

    Google Scholar 

  • Körner C (2003) Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 361:2023–2041

    Article  Google Scholar 

  • Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel S, Peláez-Riedl S, Pepin S, Siegwolf R, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Krügel P (1993) Biologie und Ökologie der Bromelienfauna von Guzmania weberbaueri im amazonischen Peru, vol 2, Biosystematics and ecology. Östereichische Akademie der Wissenschaften, Wien

    Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Larcher W (2003) Physiological plant ecology. Springer, New York

    Book  Google Scholar 

  • Laube S, Zotz G (2003) Which abiotic factors limit vegetative growth in a vascular epiphyte? Funct Ecol 17:598–604

    Article  Google Scholar 

  • Levia DF, Van Stan JT, Siegert CM, Inamdar SP, Mitchell MJ, Mage SM, McHale PJ (2011) Atmospheric deposition and corresponding variability of stemflow chemistry across temporal scales in a mid-Atlantic broadleaved deciduous forest. Atmos Environ 45:3046–3054

    Google Scholar 

  • Li CR, Gan LJ, Xia K, Zhou X, Hew CS (2002a) Responses of carboxylating enzymes, sucrose metabolizing enzymes and plant hormones in a tropical epiphytic CAM orchid to CO2 enrichment. Plant Cell Environ 25:369–377

    Article  CAS  Google Scholar 

  • Li CR, Liang YH, Hew CS (2002b) Responses of Rubisco and sucrose-metabolizing enzymes to different CO2 in a C3 tropical epiphytic orchid Oncidium Goldiana. Plant Sci 163:313–320

    Article  CAS  Google Scholar 

  • Liu W, Wang P, Li J, Liu W, Li H (2014) Plasticity of source-water acquisition in epiphytic, transitional and terrestrial growth phases of Ficus tinctoria. Ecohydrology 7:1524–1533. doi:10.1002/eco.1475

    Google Scholar 

  • Lootens P, Heursel J (1998) Irradiance, temperature, and carbon dioxide enrichment affect photosynthesis in Phalaenopsis hybrids. Hortscience 33:1183–1185

    Google Scholar 

  • Lüttge U, Stimmel KH, Smith JAC, Griffiths H (1986) Comparative ecophysiology of CAM and C3 bromeliads. II. Field measurements of gas exchange of CAM bromeliads in the humid tropics. Plant Cell Environ 9:377–383

    Article  Google Scholar 

  • MacMahon JA, Wagner FH (1985) The Mojave, Sonoran and Chihuahuan deserts of North America. In: Evenari M, Noy-Meir I, Goodall DW (eds) Hot deserts and arid shrublands, A, vol 12A, Ecosystems of the world. Elsevier, Amsterdam, pp 105–202

    Google Scholar 

  • Manzano ED, Andrade JL, Zotz G, Reyes-García C (2014) Epiphytic orchids in tropical dry forests of Yucatan, Mexico—species occurrence, abundance and correlations with host tree characteristics and environmental conditions. Flora 209:100–109

    Article  Google Scholar 

  • Manzano ED, Andrade JL, García-Mendoza E, Zotz G, Reyes-Garcia C (2015) Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatán Peninsula, Mexico. Planta 242:1425–1438. doi:10.1007/s00425-015-2383-4

    Article  CAS  Google Scholar 

  • Marschner H, Marschner P (eds) (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, Amsterdam

    Google Scholar 

  • Martin CE (1994) Physiological ecology of the Bromeliaceae. Bot Rev 60:1–82

    Article  Google Scholar 

  • Martin CE, Schmitt AK (1989) Unusual water relations in the CAM atmospheric epiphyte Tillandsia usneoides L. (Bromeliaceae). Bot Gaz 150:1–8

    Article  Google Scholar 

  • Martin CE, Tuffers A, Herppich WB, von Willert DJ (1999) Utilization and dissipation of absorbed light energy in the epiphytic Crassulacean acid metabolism bromeliad Tillandsia ionantha. Int J Plant Sci 160:307–313

    Article  CAS  Google Scholar 

  • Martin CE, Lin TC, Hsu CC, Lin SH, Lin KC, Hsia YJ, Chiou WL (2004a) Ecophysiology and plant size in a tropical epiphytic fern, Asplenium nidus, in Taiwan. Int J Plant Sci 165:65–72

    Article  Google Scholar 

  • Martin CE, Lin TC, Lin KC, Hsu CC, Chiou W (2004b) Causes and consequences of high osmotic potentials in epiphytic higher plants. J Plant Physiol 161:1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Martin CE, Mas EJ, Lu C, Ong BL (2010) The photosynthetic pathway of the roots of twelve epiphytic orchids with CAM leaves. Photosynthetica 48:42–50. doi:10.1007/s11099-010-0007-6

    Article  Google Scholar 

  • Martin CE, Rux G, Herppich WB (2013) Responses of epidermal cell turgor pressure and photosynthetic activity of leaves of the atmospheric epiphyte Tillandsia usneoides (Bromeliaceae) after exposure to high humidity. J Plant Physiol 170:70–73. doi:10.1016/j.jplph.2012.08.013

    Article  CAS  PubMed  Google Scholar 

  • Martorell C, Ezcurra E (2007) The narrow-leaf syndrome: a functional and evolutionary approach to the form of fog-harvesting rosette plants. Oecologia 151:561–573

    Article  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Maxwell C, Griffiths H, Young AJ (1994) Photosynthetic acclimation to light regime and water stress by the C3-CAM epiphyte Guzmania monostachia: gas-exchange characteristics, photochemical efficiency and the xanthophyll cycle. Funct Ecol 8:746–754

    Article  Google Scholar 

  • Mehra PN, Vij SP (1974) Some observations on the ecological adaptations and distribution pattern of the east Himalayan orchids. Am Orch Soc Bull 43:301–315

    Google Scholar 

  • Meisner K, Winkler U, Zotz G (2013) Heteroblasty in bromeliads—Anatomical, morphological and physiological changes in ontogeny are not related to the change from atmospheric to tank form. Funct Plant Biol 40:251–262

    Article  Google Scholar 

  • Milton SJ (1990) Above-ground biomass and plant cover in a succulent shrubland in the southern Karoo, South Africa. S Afr J Bot 56:587–589

    Article  Google Scholar 

  • Monteiro JAF, Zotz G, Körner C (2009) Tropical epiphytes in a CO2-rich atmosphere. Acta Oecol 35:60–68

    Article  Google Scholar 

  • Mooney HA, Bullock SH, Ehleringer JR (1989) Carbon isotope ratios of plants of a tropical forest in Mexico. Funct Ecol 3:137–142

    Article  Google Scholar 

  • Moreira ASP, Lemos Filho JP, Zotz G, Isaias RMS (2009) Anatomy and photosynthetic parameters of roots and leaves of two shade adapted orchids. Dichaea cogniauxiana Shltr Epidendrum secundum Jacq Flora 204:604–611

    Google Scholar 

  • Nadkarni NM, Matelson TJ (1991) Fine litter dynamics within the tree canopy of a tropical cloud forest. Ecology 72:2071–2082

    Article  Google Scholar 

  • Nadkarni NM, Primack R (1989) The use of gamma spectrometry to measure within-plant nutrient allocation of a tank bromeliad, Guzmania lingulata. Selbyana 11:22–25

    Google Scholar 

  • Nally J (1958) Bromeliad damage at Gotha, Florida. J Brom Soc 8:3–5

    Google Scholar 

  • Nieder J, Barthlott W (2001) Epiphytes and their role in the tropical forest canopy. In: Nieder J, Barthlott W (eds) Epiphytes and canopy fauna of the Otonga rain forest (Ecuador), vol 2, Results of the Bonn—Quito epiphyte project, funded by the Volkswagen Foundation. Books on Demand, Bonn, pp 23–88

    Google Scholar 

  • Nitta JH (2006) Distribution, ecology, and systematics of the filmy ferns (Hymenophyllaceae) of Moorea, French Polynesia. Water Resources Center Archives Biology and Geomorphology of Tropical Islands

    Google Scholar 

  • Nobel PS (1996) High productivity of certain agronomic CAM species. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution, Ecological studies. Springer, Berlin, pp 255–265

    Chapter  Google Scholar 

  • Ohrui T, Nobira H, Sakata Y, Taji T, Yamamoto C, Nishida K, Yamakawa T, Sasuga Y, Yaguchi Y, Takenaga H, Tanaka S (2007) Foliar trichome- and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon. Planta 227:47–56

    Article  CAS  PubMed  Google Scholar 

  • Olson JS, Watts JA, Allison LJ (1983) Carbon in live vegetation of major world ecosystems. DOE/NBB-0037. US Department of Energy, Carbon Dioxide Research Division, Washington, DC

    Google Scholar 

  • Oyarzun CE, Godoy R, De Schrijver A, Staelens J, Lust N (2004) Water chemistry and nutrient budgets in an undisturbed evergreen rainforest of southern Chile. Biogeochemistry 71:107–123

    Article  CAS  Google Scholar 

  • Parra MJ, Acuna K, Corcuera LJ, Saldaña A (2009) Vertical distribution of Hymenophyllaceae species among host tree microhabitats in a temperate rain forest in Southern Chile. J Veg Sci 20:588–595

    Article  Google Scholar 

  • Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annu Rev Plant Physiol Plant Mol Biol 41:421–453

    Article  CAS  Google Scholar 

  • Pearcy RW, Yang W (1996) A three-dimensional shoot architecture model for assessment of light capture and carbon gain by understory plants. Oecologia 108:1–12

    Article  Google Scholar 

  • Pérez CA, Guevara R, Carmona MR, Armesto JJ (2005) Nitrogen mineralization in epiphytic soils of an old-growth Fitzroya cupressoides forest, southern Chile. Ecoscience 12:210–215

    Google Scholar 

  • Petit M, Céréghino R, Carrias J-F, Corbara B, Dézerald O, Petitclerc F, Dejean A, Leroy C (2014) Are ontogenetic shifts in foliar structure and resource acquisition spatially conditioned in tank-bromeliads? Bot J Linn Soc 175:299–312. doi:10.1111/boj.12171

    Article  Google Scholar 

  • Petter G, Wagner K, Zotz G, Cabral JS, Wanek W, Sanchez Delgado EJ, Kreft H (2016) Distribution of functional leaf traits of vascular epiphyte: vertical trends, intra- and interspecific trait variability, and phylogenetic signals. Funct Ecol 30:188–198. doi:10.1111/1365-2435.12490

    Article  Google Scholar 

  • Picado C (1913) Les broméliacees épiphytes. Bull Sci Fr Belg 47:215–360

    Google Scholar 

  • Pickens KA, Affolter JM, Wetzstein HY, Wolf JHD (2003) Enhanced seed germination and seedling growth of Tillandsia eizii in vitro. Hortscience 38:101–104

    Google Scholar 

  • Pierce S, Winter K, Griffiths H (2002a) Carbon isotope ratio and the extent of daily CAM use by Bromeliaceae. New Phytol 156:75–83

    Article  CAS  Google Scholar 

  • Pierce S, Winter K, Griffiths H (2002b) The role of CAM in high rainfall cloud forests: an in situ comparison of photosynthetic pathways in Bromeliaceae. Plant Cell Environ 25:1181–1189

    Article  CAS  Google Scholar 

  • Pinheiro F, Borghetti F (2003) Light and temperature requirements for germination of seeds of Aechmea nudicaulis (l.) Griesebach and Streptocalyx floribundus (Martius ex Shultes f.) Mez (Bromeliaceae). Acta Bot Bras 17:27–35

    Article  Google Scholar 

  • Pinheiro F, de Barros F (2007) Morphometric analysis of Epidendrum secundum (Orchidaceae) in southeastern Brazil. Nord J Bot 25:129–136. doi:10.1111/j.2008-0107-055X.00010.x

    Article  Google Scholar 

  • Pittendrigh CS (1948) The Bromeliad-Anopheles-Malaria complex in Trinidad. I—The Bromeliad flora. Evolution 2:58–89

    Article  CAS  PubMed  Google Scholar 

  • Porembski S (2011) Evolution, diversity, and habitats of poikilohydrous vascular plants. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance, vol 215, Ecological studies. Springer, Berlin

    Chapter  Google Scholar 

  • Porembski S, Theisen I, Barthlott W (2006) Biomass allocation patterns in terrestrial, epiphytic and aquatic species of Utricularia (Lentibulariaceae). Flora 201:477–482

    Article  Google Scholar 

  • Pridgeon AM, Cribb PJ, Chase JM, Rasmussen FN (2005) Genera Orchidacearum. Epidendroideae (Part 1), vol 4. Oxford University Press, Oxford

    Google Scholar 

  • Putz FE, Holbrook NM (1989) Strangler fig rooting habits and nutrient relations in the Llanos of Venezuela. Am J Bot 76:781–788

    Google Scholar 

  • Rabatin SC, Stinner BR, Paoletti MG (1993) Vesicular-arbuscular mycorrhizal fungi, particularly Glomus tenue, in Venezuelan bromeliad epiphytes. Mycorrhiza 4:17–20

    Article  Google Scholar 

  • Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci 177:281–296. doi:10.1016/j.plantsci.2009.06.012

    Google Scholar 

  • Rains KC, Nadkarni NM, Bledsoe CS (2003) Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza 13:257–264

    Article  PubMed  Google Scholar 

  • Rambo TR, North MP (2008) Spatial and temporal variability of canopy microclimate in a Sierra Nevada riparian forest. Northwest Sci 82:259–268

    Article  Google Scholar 

  • Raveh E, Gersani M, Nobel PS (1995) CO2 uptake and fluorescence responses for a shade-tolerant cactus Hylocereus undatus under current and doubled CO2 concentrations. Physiol Plant 93:505–511

    Article  CAS  Google Scholar 

  • Rawson HM, Gardner PA, Long MJ (1987) Sources of variation in specific leaf-area in wheat grown at high-temperature. Aust J Plant Physiol 14:287–298

    Article  Google Scholar 

  • Reyes-García C, Griffiths H, Rincón E, Huante P (2008) Niche differentiation in tank and atmospheric epiphytic bromeliads of a seasonally dry forest. Biotropica 40:168–175. doi:10.1111/j.1744-7429.2007.00359.x

    Article  Google Scholar 

  • Reyes-García C, Mejia-Chang M, Griffiths H (2012) High but not dry: diverse epiphytic bromeliad adaptations to exposure within a seasonally dry tropical forest community. New Phytol 193:745–754. doi:10.1111/j.1469-8137.2011.03946.x

    Google Scholar 

  • Reynolds BC, Hunter MD (2004) Nutrient cycling. In: Lowman MD, Rinker BH (eds) Forest canopies, 2nd edn. Elsevier, San Diego, pp 387–396

    Chapter  Google Scholar 

  • Richards PW (1996) The tropical rain forest—an ecological study, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Rodrigues MA, Matiz A, Cruz AB, Matsumura AT, Takahashi CA, Hamachi L, Félix LM, Pereira PN, Latansio-Aidar SR, Aidar MPM, Demarco D, Freschi L, Mercier H, Kerbauy GB (2013) Spatial patterns of photosynthesis in thin- and thick-leaved epiphytic orchids: unravelling C3–CAM plasticity in an organ-compartmented way. Ann Bot 112:17–29. doi:10.1093/aob/mct090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruban AV, Young AJ, Horton P (1993) Induction of non-photochemical energy dissipation and absorbance changes in leaves. Evidence for changes in the state of light harvesting system of photosystem II in vivo. Plant Physiol 102:741–750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rundel PW, Dillon MO (1998) Ecological patterns in the Bromeliaceae of the lomas formations of Coastal Chile and Peru. Pl Syst Evol 212:261–278

    Article  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370

    Google Scholar 

  • Sage RF, Christin P-A, Edwards EJ (2011) The C4 plant lineages of planet Earth. J Exp Bot 62:3155–3169. doi:10.1093/jxb/err048

    Google Scholar 

  • Samson DA, Werk KS (1986) Size-dependent effects in the analysis of reproductive effort in plants. Am Nat 127:667–680

    Article  Google Scholar 

  • Saxe H, Ellsworth DS, Heath J (1998) Tree and forest functioning in an enriched CO2 atmosphere. New Phytol 139:395–436

    Article  Google Scholar 

  • Schmidt G (2000) Plant size and intraspecific variability in vascular epiphytes. PhD thesis, Bayerische Julius-Maximilians-Universität, Würzburg

    Google Scholar 

  • Schmidt S, Tracey DP (2006) Adaptations of strangler figs to life in the rainforest canopy. Funct Plant Biol 33:465–475

    Article  Google Scholar 

  • Schmidt G, Zotz G (2000) Herbivory in the epiphyte, Vriesea sanguinolenta Cogn. & Marchal (Bromeliaceae). J Trop Ecol 16:829–839

    Article  Google Scholar 

  • Schmidt G, Zotz G (2002) Inherently slow growth in two Caribbean epiphytic species: a demographic approach. J Veg Sci 13:527–534

    Article  Google Scholar 

  • Shipley B (2006) Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Funct Ecol 20:565–574. doi:10.1111/j.1365-2435.2006.01135.x

    Article  Google Scholar 

  • Silvera K, Neubig KM, Whitten WM, Williams NH, Winter K, Cushman JC (2010) Evolution along the crassulacean acid metabolism continuum. Funct Plant Biol 37:995–1010. doi:10.1071/fp10084

  • Smith JAC, Winter K (1996) Taxonomic distribution of crassulacean acid metabolism. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism: Biochemistry, ecophysiology and evolution, Ecological studies. Springer, Berlin, pp 427–436

    Chapter  Google Scholar 

  • Snaddon JL, Turner EC, Fayle TM, Khen CV, Eggleton P, Foster WA (2012) Biodiversity hanging by a thread: the importance of fungal litter-trapping systems in tropical rainforests. Biol Lett 8:397–400. doi:10.1098/rsbl.2011.1115

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: The Physical Science Basis. Contribution of working group I to the 4th assessment report of the intergovernmental panel on climate change, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Stuntz S, Zotz G (2001) Photosynthesis in vascular epiphytes—a survey of 27 species of diverse taxonomic origin. Flora 196:132–141

    Google Scholar 

  • Stuntz S, Simon U, Zotz G (2002) Rainforest airconditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns. Int J Biometeorol 46:53–59

    Article  PubMed  Google Scholar 

  • Tanner EVJ (1980) Studies on the biomass and productivity in a series of montane rain forests in Jamaica. J Ecol 68:573–588

    Article  Google Scholar 

  • Tausz M, Hietz P, Briones O (2001) The significance of carotenoids and tocopherols in photoprotection of seven epiphytic fern species of a Mexican cloud forest. Aust J Plant Physiol 28:775–783

    CAS  Google Scholar 

  • Trepanier M, Lamy MP, Dansereau B (2009) Phalaenopsis can absorb urea directly through their roots. Plant and Soil 319:95–100. doi:10.1007/s11104-008-9852-5

    Article  CAS  Google Scholar 

  • Treseder KK, Davidson DW, Ehleringer JR (1995) Absorption of ant-provided carbon dioxide and nitrogen by a tropical epiphyte. Nature 375:137–139

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Lobakova ES, Kolomeitseva GL, Cherdyntseva TA, Netrusov AI (2003) Localization of associative cyanobacteria on the roots of epiphytic orchids. Microbiology 72:86–91

    Article  CAS  Google Scholar 

  • Tsutsumi C, Miyoshi K, Yukawa T, Kato M (2011) Responses of seed germination and protocorm formation to light intensity and temperature in epiphytic and terrestrial Liparis (Orchidaceae). Botany-Botanique 89:841–848. doi:10.1139/b11-066

    Google Scholar 

  • Turner EC, Snaddon JL, Johnson HR, Foster WA (2007) The impact of bird’s nest ferns on stemflow nutrient concentration in a primary rain forest, Sabah, Malaysia. J Trop Ecol 23:721–724

    Article  Google Scholar 

  • Vance ED, Nadkarni NM (1990) Microbial biomass and activity in canopy organic matter and the forest floor of a tropical cloud forest. Soil Biol Biochem 22:677–684

    Article  CAS  Google Scholar 

  • Vaz APA, Figueiredo-Ribeiro RDL, Kerbauy GB (2004) Photoperiod and temperature effects on in vitro growth and flowering of P. pusilla, an epiphytic orchid. Plant Physiol Biochem 42:411–415

    Article  CAS  PubMed  Google Scholar 

  • Veneklaas EJ (1990) Nutrient fluxes in bulk precipitation and throughfall in two montane tropical rain-forests, Colombia. J Ecol 78:974–992

    Article  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298

    Article  CAS  Google Scholar 

  • Wagner K, Bogusch W, Zotz G (2013) The role of the regeneration niche for the vertical stratification of vascular epiphytes. J Trop Ecol 29:277–290. doi:10.1017/S0266467413000291

    Article  Google Scholar 

  • Wanek W, Zotz G (2011) Are vascular epiphytes nitrogen or phosphorus limited? A study of plant 15N fractionation and foliar N : P stoichiometry with the tank bromeliad Vriesea sanguinolenta. New Phytol 192:462–470. doi:10.1111/j.1469-8137.2011.03812.x

    Article  CAS  PubMed  Google Scholar 

  • Wanek W, Arndt SK, Huber W, Popp M (2002) Nitrogen nutrition during ontogeny of hemiepiphytic Clusia species. Funct Plant Biol 29:733–740

    Article  CAS  Google Scholar 

  • Wania R, Hietz P, Wanek W (2002) Natural 15N abundance of epiphytes depends on the position within the forest canopy: Source signals and isotope fractionation. Plant Cell Environ 25:581–589

    Article  CAS  Google Scholar 

  • Watkins JE, Mack MC, Sinclair TR, Mulkey SS (2007) Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytol 176:708–717

    Article  PubMed  Google Scholar 

  • Wegner C, Wunderlich M, Kessler M, Schawe M (2003) Foliar C:N ratio of ferns along an Andean elevational gradient. Biotropica 35:486–490

    Article  Google Scholar 

  • Went FW (1940) Soziologie der Epiphyten eines tropischen Regenwaldes. Ann Jard Bot Buitenz 50:1–98

    Google Scholar 

  • Werner FA, Homeier J, Oesker M, Boy J (2012) Epiphytic biomass of a tropical montane forest varies with topography. J Trop Ecol 28:23–31. doi:10.1017/S0266467411000526

    Google Scholar 

  • Wester S, Zotz G (2011) Seed comas of bromeliads promote germination and early seedling growth by wick-like water uptake. J Trop Ecol 27:115–119

    Article  Google Scholar 

  • Wester S, Mendieta Leiva G, Nauheimer L, Wanek W, Kreft H, Zotz G (2011) Diversity and biogeography of vascular epiphytes at Río Changuinola. Panama Flora 206:66–79. doi:10.1016/j.flora.2010.01.011

    Article  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268

    Article  PubMed  Google Scholar 

  • Winkler U, Zotz G (2009) Highly efficient uptake of phosphorus in epiphytic bromeliads. Ann Bot 103:477–484. doi:10.1093/aob/mcn231

    Article  CAS  PubMed  Google Scholar 

  • Winkler U, Zotz G (2010) “And then there were three”: Highly efficient uptake of potassium by foliar trichomes of epiphytic bromeliads. Ann Bot 106:421–427. doi:10.1093/aob/mcq120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winter K, Holtum JAM (2002) How closely do the δ13C values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? Plant Physiol 129:1843–1851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winter K, Smith JAC (1996) An introduction to crassulacean acid metabolism: biochemical principles and biological diversity. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution, Ecological studies. Springer, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Wu P-H, Huang D-D, Chang DCN (2011) Mycorrhizal symbiosis enhances Phalaenopsis orchid's growth and resistance to Erwinia chrysanthemi. Afr J Biotechnol 10:10095–10100

    Google Scholar 

  • Yang J-T, Chen M-Y, Jiang Y-Y (2001) Biodiversity of the invertebrate community in epiphytic substrates of the Guandaushi Forest Ecosystem. Central Taiwan Form Entomol 21:99–117

    Google Scholar 

  • Zhang Q, Chen J-W, Li B-G, Cao K-F (2009) Epiphytes and hemiepiphytes have slower photosynthetic response to lightflecks than terrestrial plants: evidence from ferns and figs. J Trop Ecol 25:465–472. doi:10.1017/S026646740900618X

    Article  Google Scholar 

  • Zotz G (1998) Demography of the epiphytic orchid, Dimerandra emarginata. J Trop Ecol 14:725–741

    Article  Google Scholar 

  • Zotz G (1999) What are backshoots good for? Seasonal changes in mineral, carbohydrate, and water content of different organs of the epiphytic orchid, Dimerandra emarginata. Ann Bot 84:791–798

    Article  CAS  Google Scholar 

  • Zotz G (2000) Size dependence in the reproductive allocation of Dimerandra emarginata, an epiphytic orchid. Ecotropica 6:95–98

    Google Scholar 

  • Zotz G (2004a) How prevalent is crassulacean acid metabolism among vascular epiphytes? Oecologia 138:184–192

    Article  PubMed  Google Scholar 

  • Zotz G (2004b) The resorption of phosphorus is greater than that of nitrogen in senescing leaves of vascular epiphytes from lowland Panama. J Trop Ecol 20:693–696

    Article  Google Scholar 

  • Zotz G (2005) Vascular epiphytes in the temperate zones—a review. Plant Ecol 176:173–183

    Article  Google Scholar 

  • Zotz G (2009) Growth in the xerophytic epiphyte, Tillandsia flexuosa. Ecotropica 15:7–12

    Google Scholar 

  • Zotz G, Andrade JL (1998) Water relations of two co-occurring epiphytic bromeliads. J Plant Physiol 152:545–554

    Article  CAS  Google Scholar 

  • Zotz G, Asshoff R (2010) Growth in epiphytic bromeliads: response to the relative supply of phosphorus and nitrogen. Plant Biol 12:108–113. doi:10.1111/j.1438-8677.2009.00216.x

    Article  CAS  PubMed  Google Scholar 

  • Zotz G, Bader MY (2009) Epiphytic plants in a changing world: global change effects on vascular and non-vascular epiphytes. Prog Bot 70:147–170

    Article  CAS  Google Scholar 

  • Zotz G, Hietz P (2001) The physiological ecology of vascular epiphytes: current knowledge, open questions. J Exp Bot 52:2067–2078

    Article  CAS  PubMed  Google Scholar 

  • Zotz G, Laube S (2005) Tank function in the epiphytic bromeliad, Catopsis sessiliflora. Ecotropica 11:63–68

    Google Scholar 

  • Zotz G, Mikona C (2003) Photosynthetic induction and leaf carbon gain in the tropical understorey epiphyte, Aspasia principisa. Ann Bot 91:353–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zotz G, Richter A (2006) Changes in carbohydrate and nutrient contents throughout a reproductive cycle indicate that phosphorus is a limiting nutrient in the epiphytic bromeliad, Werauhia sanguinolenta. Ann Bot 97:745–754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zotz G, Thomas V (1999) How much water is in the tank? Model calculations for two epiphytic bromeliads. Ann Bot 83:183–192

    Article  Google Scholar 

  • Zotz G, Tyree MT (1996) Water stress in the epiphytic orchid, Dimerandra emarginata (G. Meyer) Hoehne. Oecologia 107:151–159

    Article  Google Scholar 

  • Zotz G, Vollrath B (2003) The epiphyte vegetation of the palm, Socratea exorrhiza—correlations with tree size, tree age, and bryophyte cover. J Trop Ecol 19:81–90. doi:10.1017/S0266467403003092

    Article  Google Scholar 

  • Zotz G, Winkler U (2013) Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia 171:733–741

    Article  PubMed  Google Scholar 

  • Zotz G, Winter K (1993) Short-term photosynthesis measurements predict leaf carbon balance in tropical rainforest canopy plants. Planta 191:409–412

    Article  CAS  Google Scholar 

  • Zotz G, Winter K (1994a) Annual carbon balance and nitrogen use efficiency in tropical C3 and CAM epiphytes. New Phytol 126:481–492

    Article  CAS  Google Scholar 

  • Zotz G, Winter K (1994b) A one-year study on carbon, water and nutrient relationships in a tropical C3-CAM hemiepiphyte, Clusia uvitana. New Phytol 127:45–60

    Article  CAS  Google Scholar 

  • Zotz G, Winter K (1996) Seasonal changes in daytime versus nighttime CO2 fixation of Clusia uvitana in situ. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism: Biochemistry, ecophysiology and evolution, Ecological studies. Springer, Berlin, pp 312–323

    Chapter  Google Scholar 

  • Zotz G, Hietz P, Schmidt G (2001a) Small plants, large plants—the importance of plant size for the physiological ecology of vascular epiphytes. J Exp Bot 52:2051–2056

    Article  CAS  PubMed  Google Scholar 

  • Zotz G, Thomas V, Hartung W (2001b) Ecophysiological consequences of differences in plant size: abscisic acid (ABA) relations in the epiphytic orchid, Dimerandra emarginata. Oecologia 129:179–185

    Article  Google Scholar 

  • Zotz G, Reichling P, Valladares F (2002) A simulation study on the importance of size-related changes in leaf morphology and physiology for carbon gain of an epiphytic bromeliad. Ann Bot 90:437–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zotz G, Vollrath B, Schmidt G (2003) Carbon relations of fruits of epiphytic orchids. Flora 198:98–105

    Article  Google Scholar 

  • Zotz G, Laube S, Schmidt G (2005) Long-term population dynamics of the epiphytic bromeliad, Werauhia sanguinolenta. Ecography 28:806–814

    Article  Google Scholar 

  • Zotz G, Bogusch W, Hietz P, Ketteler N (2010) Growth of epiphytic bromeliads in a changing world: the effect of elevated CO2 and varying water and nutrient supply. Acta Oecol 36:659–665

    Article  Google Scholar 

  • Zotz G, Schmidt G, Mikona C (2011) What is the proximate cause for size-dependent ecophysiological differences in vascular epiphytes? Plant Biol 13:902–908

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zotz, G. (2016). Physiological Ecology. In: Plants on Plants – The Biology of Vascular Epiphytes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-39237-0_5

Download citation

Publish with us

Policies and ethics