Skip to main content

Functional Anatomy and Morphology

  • Chapter
  • First Online:

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Form and function go together. Thus, this chapter explores how anatomical and morphological features of vascular epiphytes can be interpreted as predisposition or adaptation to the challenges of structurally dependent existence. I start out with a critical discussion of the notion that epiphytes are generally small statured, followed by a treatment of particularities of shoot architecture in epiphytes, e.g., the possibility of pendant forms. Then, I discuss the morphology of the other basic plant organs (leaves, roots) in comparison to soil-rooted flora. Other characteristics of central importance for life in trees are seed size and morphology as determinants of dispersal characteristics—there is surprisingly little information on this for epiphytes, particular in regard to functional analyses. Finally, a sudden change in morphology during ontogeny that is quite common among epiphytic bromeliads (heteroblasty) and its functional implications are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams WW III, Martin CE (1986) Morphological changes accompanying the transition from juvenile (atmospheric) to adult (tank) forms in the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). Am J Bot 73:1207–1214

    Article  Google Scholar 

  • Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145:367–421

    Article  Google Scholar 

  • Argent G (2006) Rhododendrons of subgenus Vireya. Royal Horticultural Society, London

    Google Scholar 

  • Barthlott W, Capesius I (1975) Mikromorphologische und funktionelle Untersuchungen am Velamen radicum der Orchideen. Ber Deutsch Bot Ges 88:379–390

    Google Scholar 

  • Barthlott W, Ziegler B (1980) Über ausziehbare helicale Zellwandverdickungen als Haft-Apparat der Samenschalen von Chiloschista lunifera (Orchidaceae). Ber Deutsch Bot Ges 93:391–403. doi:10.1111/j.1438-8677.1980.tb03349.x

  • Barthlott W, Porembski S, Seine R, Theisen I (1987) The curious world of carnivorous plants: a comprehensive guide to their biology and cultivation. Timber Press, Portland

    Google Scholar 

  • Benzing DH (1986) The vegetative basis of vascular epiphytism. Selbyana 9:23–43

    Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. General biology and related biota. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Benzing DH (1996) Aerial roots and their environments. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 875–894

    Google Scholar 

  • Benzing DH (2000) Bromeliaceae—profile of an adaptive radiation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Benzing DH (2012) Air plants. Cornell University, Ithaca, NY

    Google Scholar 

  • Benzing DH, Burt KM (1970) Foliar permeability among twenty species of the Bromeliaceae. Bull Torrey Bot Club 97:269–279

    Article  Google Scholar 

  • Benzing DH, Ott DW (1981) Vegetative reduction in epiphytic Bromeliaceae and Orchidaceae: its origin and significance. Biotropica 13:131–140

    Article  Google Scholar 

  • Benzing DH, Pridgeon AM (1983) Foliar trichomes of Pleurothallidinae (Orchidaceae): functional significance. Am J Bot 70:173–180

    Article  Google Scholar 

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377

    Article  CAS  Google Scholar 

  • Burr B, Barthlott W (1991) On a velamen-like tissue in the root cortex of orchids. Flora 185:313–323

    Google Scholar 

  • Cameron KM (2005) Leave it to the leaves: a molecular phylogenetic study of Malaxideae (Epidendroideae, Orchidaceae). Am J Bot 92:1025–1032

    Article  PubMed  Google Scholar 

  • Carlquist S, Schneider EL (2010) Origins and nature of vessels in monocotyledons. 12. Pit membrane microstructure diversity in tracheary elements of Astelia. Pac Sci 64:607–618. doi:10.2984/64.4.607

    Article  Google Scholar 

  • Carlsward BS, Stern WL, Bytebier B (2006) Comparative vegetative anatomy and systematics of the angraecoids (Vandeae, Orchidaceae) with an emphasis on the leafless habit. Bot J Linn Soc 151:165–218. doi:10.1111/j.1095-8339.2006.00502.x

    Google Scholar 

  • Chase MW (1986) A monograph of Leochilus (Orchidaceae). Syst Bot Monogr 14:1–97

    Article  Google Scholar 

  • Cheadle VI, Kosakai H (1982) The occurrence and kinds of vessels in Orchidaceae. Phyta (special issue):45–57

    Google Scholar 

  • Chiang J-M, Lin T-C, Luo Y-C, Chang C-T, Cheng J-Y, Martin CE (2013) Relationships among rainfall, leaf hydrenchyma, and Crassulacean acid metabolism in Pyrrosia lanceolata (L.) Fraw. (Polypodiaceae) in central Taiwan. Flora 208:343–350. doi:10.1016/j.flora.2013.04.007

    Article  Google Scholar 

  • Chomicki G, Bidel LPR, Ming F, Coiro M, Zhang X, Wang Y, Baissac Y, Jay-Allemand C, Renner SS (2015) The velamen protects photosynthetic orchid roots against UV-B damage, and a large dated phylogeny implies multiple gains and losses of this function during the Cenozoic. New Phytol 205:1330–1341. doi:10.1111/nph.13106

    Article  CAS  PubMed  Google Scholar 

  • Creese C, Lee A, Sack L (2011) Drivers of morphological diversity and distribution in the Hawaiian fern flora: trait associations with size, growth form, and environment. Am J Bot 98:956–966. doi:10.3732/ajb.1000237

    Google Scholar 

  • Croat T (1986) A revision of the genus Anthurium (Araceae) of Mexico and Central America Part II: Panama. Monogr Syst Bot Mo Bot Gard 14:1–204

    Article  Google Scholar 

  • da Cunha Neto IL, Martins FM (2012) Anatomy of the vegetative organs of Agave sisalana Perrine ex Engelm (Agavaceae). Rev Caatinga 25:72–78

    Google Scholar 

  • da Silva IV, Scatena VL (2011) Anatomia de raízes de nove espécies de Bromeliaceae (Poales) da região amazônica do estado de Mato Grosso, Brasil. Acta Bot Bras 25:618–627

    Article  Google Scholar 

  • Dimmit MA (1985) Intraspecific variations in Tillandsia: selecting superior forms. J Brom Soc 19:130–131

    Google Scholar 

  • Dressler RL (1981) The orchids. Natural history and classification. Harvard University Press, Cambridge

    Google Scholar 

  • Dubuisson JY, Hennequin S, Rakotondrainibe F, Schneider H (2003) Ecological diversity and adaptive tendencies in the tropical fern Trichomanes L. (Hymenophyllaceae) with special reference to climbing and epiphytic habits. Bot J Linn Soc 142:41–63

    Article  Google Scholar 

  • Dubuisson JY, Rouhan G, Grall A, Hennequin S, Senterre B, Pynee K, Ebihara A (2013) New insights into the systematics and evolution of the filmy fern genus Crepidomanes (Hymenophyllaceae) in the Mascarene Archipelago with a focus on dwarf species. Acta Bot Gall 160:173–194. doi:10.1080/12538078.2013.819294

    Article  Google Scholar 

  • Evans GC (1972) The quantitative analysis of plant growth, vol 1, Studies in ecology. University of California Press, Berkeley, CA

    Google Scholar 

  • Evans TM, Brown GK (1989) Stomata in Tillandsia bryoides. J Brom Soc 39:58–61

    Google Scholar 

  • Evans RC, Vander Kloet SP (2010) Comparative analysis of hypocotyl development in epiphytic, lignotuber-forming, and terrestrial Vaccinieae (Ericaceae). Botany-Botanique 88:556–564. doi:10.1139/b10-031

    Article  Google Scholar 

  • Farnsworth EJ, Ellison AM (2008) Prey availability directly affects physiology, growth, nutrient allocation and scaling relationships among leaf traits in 10 carnivorous plant species. J Ecol 96:213–221. doi:10.1111/j.1365-2745.2007.01313.x

    Google Scholar 

  • Farrar DR, Dassler C, Watkins JE Jr, Skelton C (2008) Gametophyte ecology. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and lycophytes, vol 9. Cambridge University Press, New York, pp 222–256

    Chapter  Google Scholar 

  • Freschi L, Takahashi CA, Cambui CA, Semprebom TR, Cruz AB, Mioto PT, Versieux LD, Calvente A, Latansio-Aidar SR, Aidar MPM, Mercier H (2010) Specific leaf areas of the tank bromeliad Guzmania monostachia perform distinct functions in response to water shortage. J Plant Physiol 167:526–533. doi:10.1016/j.jplph.2009.10.011

    Article  CAS  PubMed  Google Scholar 

  • Freudenstein JV, Chase MW (2015) Phylogenetic relationships in Epidendroideae (Orchidaceae), one of the great flowering plant radiations: progressive specialization and diversification. Ann Bot 115:665–681. doi:10.1093/aob/mcu253

    Google Scholar 

  • Gilmartin AJ, Brown GK (1986) Cladistic tests of hypotheses concerning evolution of xerophytes and mesophytes within Tillandsia subg. Phytarrhiza (Bromeliaceae). Am J Bot 73:387–397

    Article  Google Scholar 

  • Givnish TJ, Millam KC, Berry PE, Sytsma KJ (2007) Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred from ndhF sequence data. Aliso 23:3–26

    Article  Google Scholar 

  • Givnish TJ, Barfuss MHJ, Ee BV, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Sytsma KJ (2014) Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol Phylogenet Evol 71:55–78. doi:10.1016/j.ympev.2013.10.010

    Article  PubMed  Google Scholar 

  • Godoy O, Gianoli E (2013) Functional variation of leaf succulence in a cold rainforest epiphyte. Plant Ecol Evol 146:167–172

    Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Haas NF (1975) 32P, 22N, und 99Tc in Versuchen über den Wassertransport in Luftwurzeln von Vanda tricolor Lindl. Z Pflanzenphysiol 75:427–435

    Article  CAS  Google Scholar 

  • Hallé N (1986) Les elateres des Sarcanthinae et additions aux Orchidaceae de la Nouvelle-Caledonie. Bulletin du Museum national d’Histoire naturelle, Paris, 4e ser, 8, section B. Adansonia 3:215–239

    Google Scholar 

  • Hammel BE, Grayum MH, Herrera CNZ, Troyo S (2003) Monocotiledoneas (Orchidaceae-Zingiberaceae), vol 3. Manual de Plantas de Costa Rica. Missouri Botanical Garden, St. Louis, MO

    Google Scholar 

  • Hedenäs L (2012) Morphological and anatomical features associated with epiphytism among the pleurocarpous mosses—one basis for further research on adaptations and their evolution. J Bryol 34:79–100. doi:10.1179/1743282011y.0000000049

    Article  Google Scholar 

  • Hew CS, Ng CKY (1996) Changes in mineral and carbohydrate content in pseudobulbs of the C3 epiphytic orchid hybrid Oncidium Goldiana at different growth stages. Lindleyana 11:125–134

    Google Scholar 

  • Holbrook NM, Putz FE (1996) From epiphyte to tree: differences in leaf structure and leaf water relations associated with the transition in growth form in eight species of hemiepiphytes. Plant Cell Environ 19:631–642

    Article  Google Scholar 

  • Horres R, Zizka G (1995) Untersuchungen zur Blattsukkulenz bei Bromeliaceae. Beitr Biol Pflanzen 69:43–76

    Google Scholar 

  • Huttunen S, Bell N, Bobrova VK, Buchbender V, Buck WR, Cox CJ, Goffinet B, Hedenaes L, Ho B-C, Ignatov MS, Krug M, Kuznetsova O, Milyutina IA, Newton A, Olsson S, Pokorny L, Shaw JA, Stech M, Troitsky A, Vanderpoorten A, Quandt D (2012) Disentangling knots of rapid evolution: origin and diversification of the moss order Hypnales. J Bryol 34:187–211. doi:10.1179/1743282012y.0000000013

    Article  Google Scholar 

  • Huxley CR (1980) Symbiosis between ants and epiphytes. Biol Rev 55:321–340

    Article  Google Scholar 

  • Johansson D (1974) Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr Suec 59:1–136

    Google Scholar 

  • Kale MV, Dongare M (2007) Comparative analysis of nitrogen metabolism in the dimorphic ferns of Western Ghats. Indian Fern J 24:82–84

    Google Scholar 

  • Kaul RB (1977) Role of multiple epidermis in foliar succulence of Peperomia (Piperaceae). Bot Gaz 138:213–218. doi:10.1086/336917

    Google Scholar 

  • Larcher W (2003) Physiological plant ecology. Springer, New York

    Book  Google Scholar 

  • Leroux O, Bagniewska-Zadworna A, Rambe SK, Knox JP, Marcus SE, Bellefroid E, Stubbe D, Chabbert B, Habrant A, Claeys M, Viane RLL (2011) Non-lignified helical cell wall thickenings in root cortical cells of Aspleniaceae (Polypodiales): histology and taxonomical significance. Ann Bot 107:195–207. doi:10.1093/aob/mcq225

    Article  CAS  PubMed  Google Scholar 

  • Lierau M (1888) Über die Wurzeln der Araceen. Bot Jahrb Syst Pflanzengesch Pflanzengeogr 9:1–38

    Google Scholar 

  • Mayo SJ, Bogner J, Boyce P (1997) The genera of Araceae. Royal Botanic Gardens, Kew, London

    Google Scholar 

  • McWilliams EL (1974) Evolutionary ecology. Flora Neotropica 40–64

    Google Scholar 

  • Meisner K, Winkler U, Zotz G (2013) Heteroblasty in bromeliads—anatomical, morphological and physiological changes in ontogeny are not related to the change from atmospheric to tank form. Funct Plant Biol 40:251–262

    Article  Google Scholar 

  • Mulay BN, Deshpande BD (1961) Velamen in terrestrial monocots—role of velamen tissue in taxonomy and phylogeny of monocotyledons. Proc Rajasthan Acad Sci 8:115–120

    Google Scholar 

  • Ng CKY, Hew CS (2000) Orchid pseudobulbs—‘false’ bulbs with a genuine importance in orchid growth and survival. Sci Hortic 83:165–172

    Article  Google Scholar 

  • Nieder J, Barthlott W (2001) Epiphytes and their role in the tropical forest canopy. In: Nieder J, Barthlott W (eds) Epiphytes and canopy fauna of the Otonga rain forest (Ecuador), vol 2, Results of the Bonn—Quito epiphyte project, funded by the Volkswagen Foundation. Books on Demand, Bonn, pp 23–88

    Google Scholar 

  • Olatunji OA, Nengim RO (1980) Occurrence and distribution of tracheoidal elements in the Orchidaceae. Bot J Linn Soc 80:357–370

    Article  Google Scholar 

  • Oliveira VC, Sajo MG (1999) Anatomia foliar de espécies epífitas de Orchidaceae. Rev Bras Bot 22:365–374

    Google Scholar 

  • Paek KY, Jun ES (1995) Stomatal density, size and morphological characteristics in orchids. J Korean Soc Hortic Sci 36:851–862

    Google Scholar 

  • Palací CA, Brown GK, Tuthill DE (2004) The seeds of Catopsis (Bromeliaceae: Tillandsioideae). Syst Bot 29:518–527. doi:10.1600/0363644041744473

    Article  Google Scholar 

  • Parkhurst DF, Loucks OL (1972) Optimal leaf size in relation to environment. J Ecol 60:505–537

    Article  Google Scholar 

  • Parrilla Díaz AT, Ackerman JD (1990) Epiphyte roots: anatomical correlates to environmental parameters in Puerto Rican orchids. Orquídea (Mex) 12:105–116

    Google Scholar 

  • Pereira TAR, de Oliveira TS, da Silva LC, Azevedo AA (2011) Comparative leaf anatomy of four species of Bromelioideae (Bromeliaceae) occurring in the Atlantic Forest, Brazil. Botany-Botanique 89:243–253. doi:10.1139/b11-011

    Google Scholar 

  • Petit M, Céréghino R, Carrias J-F, Corbara B, Dézerald O, Petitclerc F, Dejean A, Leroy C (2014) Are ontogenetic shifts in foliar structure and resource acquisition spatially conditioned in tank-bromeliads? Bot J Linn Soc 175:299–312. doi:10.1111/boj.12171

    Article  Google Scholar 

  • Pierce S (2007) The jeweled armour of Tillandsia—multifaceted or elongated trichomes provide photoprotection. Aliso 23:44–52

    Article  Google Scholar 

  • Pierce S, Brusa G, Sartori M, Cerabolini BEL (2012) Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Ann Bot 109:1047–1053. doi:10.1093/aob/mcs021

    Google Scholar 

  • Pita PB, De Menezes NL, Prado J (2002) Anatomia da raiz de espécies de Dyckia Schult. f. e Encholirium Mart. ex Schult. & Schult. f. (Bromeliaceae, Pitcairnioideae) da Serra do Cipó (Minas Gerais, Brasil), com especial refêrencia ao velame. Rev Bras Bot 25:25–34

    Article  Google Scholar 

  • Porembski S, Barthlott W (1988) Velamen radicum micromorphology and classification of Orchidaceae. Nord J Bot 8:117–137

    Article  Google Scholar 

  • Porembski S, Theisen I, Barthlott W (2006) Biomass allocation patterns in terrestrial, epiphytic and aquatic species of Utricularia (Lentibulariaceae). Flora 201:477–482

    Article  Google Scholar 

  • Pridgeon AM (1981) Absorbing trichomes in the Pleurothallidinae (Orchidaceae). Am J Bot 68:64–71. doi:10.2307/2442992

    Google Scholar 

  • Pridgeon AM (1982) Diagnostic anatomical characters in the Pleurothallidinae (Orchidaceae). Am J Bot 69:921–938. doi:10.2307/2442889

    Google Scholar 

  • Pridgeon AM (1987) The velamen and exodermis of orchid roots. In: Arditti J (ed) Orchid biology, vol 4, Reviews and perspectives. Cornell University Press, Ithaca, NY, pp 139–192

    Google Scholar 

  • Pridgeon AM, Stern WL, Benzing DH (1983) Tilosomes in roots of Orchidaceae: morphology and systematic occurrence. Am J Bot 70:1365–1377

    Article  Google Scholar 

  • Pridgeon AM, Cribb PJ, Chase JM, Rasmussen FN (2005) Genera Orchidacearum, vol 4, Epidendroideae (Part 1). Oxford University Press, Oxford

    Google Scholar 

  • Pridgeon AM, Cribb PJ, Chase JM, Rasmussen FN (2009) Genera Orchidacearum, vol 5, Epidendroideae (Part 2). Oxford University Press, Oxford

    Google Scholar 

  • Pridgeon AM, Cribb PJ, Chase JM, Rasmussen FN (2014) Genera Orchidacearum, vol 6, Epidendroideae (Part 3). Oxford University Press, Oxford

    Google Scholar 

  • Rao TA, Bhattacharya J (1977) Typology and distributional pattern of foliar sclereids in Plethiandra Hook. f. (Melastomataceae). Proc Indian Acad Sci Sect B 86:45

    Google Scholar 

  • Rasmussen H (1987) Orchid stomata—structure, differentiation, function, and phylogeny. In: Arditti J (ed) Orchid biology—reviews and perspectives, vol 4. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Reddell P, Hopkins MS, Graham AW (1996) Functional association between apogeotropic aerial roots, mycorrhizas and paper-barked stems in a lowland tropical rainforest in North Queensland. J Trop Ecol 12:763–777

    Article  Google Scholar 

  • Reginato M, Boeger MRT, Goldenberg R (2009) Comparative anatomy of the vegetative organs in Pleiochiton A. Gray (Melastomataceae), with emphasis on adaptations to epiphytism. Flora 204:782–790. doi:10.1016/j.flora.2008.11.006

    Article  Google Scholar 

  • Reinert F, Meirelles ST (1993) Water acquisition strategy shifts in the heterophyllous saxicolous bromeliad, Vriesea geniculata (Wawra) Wawra. Selbyana 14:80–88

    Google Scholar 

  • Reyes-García C, Mejia-Chang M, Jones GD, Griffiths H (2008) Water vapour isotopic exchange by epiphytic bromeliads in tropical dry forests reflects niche differentiation and climatic signals. Plant Cell Environ 31:828–841. doi:10.1111/j.1365-3040.2008.01789.x

    Article  PubMed  Google Scholar 

  • Rockwood LL (1985) Seed weight as a function of life form, elevation and life zone in neotropical forests. Biotropica 17:32–39

    Article  Google Scholar 

  • Sanford RL Jr (1987) Apogeotropic roots in an Amazon rain forest. Science 235:1062–1064

    Article  PubMed  Google Scholar 

  • Sanford WW, Adanlawo FLS, Adanlawo I (1973) Velamen and exodermis characters of West African epiphytic orchids in relation to taxonomic grouping and habitat tolerance. Bot J Linn Soc 66:307–321

    Article  Google Scholar 

  • Sawidis T, Kalyva S, Delivopoulos S (2005) The root-tuber anatomy of Asphodelus aestivus. Flora 200:332–338. doi:10.1016/j.flora.2004.10.002

    Google Scholar 

  • Schimper AFW (1888) Die epiphytische Vegetation Amerikas, vol 2, Botanische Mitteilungen aus den Tropen. Gustav Fischer, Jena

    Google Scholar 

  • Schmidt S, Tracey DP (2006) Adaptations of strangler figs to life in the rainforest canopy. Funct Plant Biol 33:465–475

    Article  Google Scholar 

  • Schneider H (2000) Morphology and anatomy of roots in the filmy fern tribe Trichomaneae H. Schneider (Hymenophyllaceae, Filicatae) and the evolution of rootless taxa. Bot J Linn Soc 132:29–46

    Article  Google Scholar 

  • Swamy KK, Kumar HNK (2007) Studies on seed morphometry of Dendrobium species. Phytomorphology 57:33–43

    Google Scholar 

  • Thorsch J, Stern WL (1997) Tracheary studies and the terrestrial ancestry of Orchidaceae. Int J Plant Sci 158:222–227

    Article  Google Scholar 

  • Tomlinson PB (1970) Monocotyledons—towards an understanding of their morphology and anatomy. Adv Bot Res 3:207–292

    Article  Google Scholar 

  • Troll W (1952) Beiträge zur Kenntnis der Radikationsverhältnisse von Farnen. A Über Wuchsform und Wurzelbildung von Asplenium nidus L. Abh Math Naturwiss Kl 1:1–25

    Google Scholar 

  • Troll W (1961) Cochliostema odoratissimum Lem. Organisation und Lebenweise nebst vergleichenden Ausblicken auf andere Commelinaceen. Beitr Biol Pflanzen 36:325–389

    Google Scholar 

  • Tsutsumi C, Kato M (2008) Morphology and evolution of epiphytic Davalliaceae scales. Botany-Botanique 86:1393–1403. doi:10.1139/b08-098

    Article  Google Scholar 

  • Tsutsumi C, Yukawa T, Lee NS, Lee CS, Kato M (2007) Phylogeny and comparative seed morphology of epiphytic and terrestrial species of Liparis (Orchidaceae) in Japan. J Plant Res 120:405–412

    Article  PubMed  Google Scholar 

  • Turner EC, Snaddon JL, Johnson HR, Foster WA (2007) The impact of bird’s nest ferns on stemflow nutrient concentration in a primary rain forest, Sabah, Malaysia. J Trop Ecol 23:721–724

    Article  Google Scholar 

  • van Guttenberg H (1968) Die Differenzierung und Ausgestaltung der Wurzelgewebe. In: Guttenberg van H (ed) Der primäre Bau der Angiospermenwurzel, vol 2, Bornträger, Berlin, pp 103–137

    Google Scholar 

  • Wardle DA, Yeates GW, Barker GM, Bellingham PJ, Bonner KI, Williamson WM (2003) Island biology and ecosystem functioning in epiphytic soil communities. Science 301:1717–1720

    Article  CAS  PubMed  Google Scholar 

  • Watkins JE, Mack MC, Sinclair TR, Mulkey SS (2007) Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytol 176:708–717

    Article  PubMed  Google Scholar 

  • Went FW (1895) Über Haft- und Nährwurzeln bei Kletterpflanzen und Epiphyten. Ann Jard Bot Buitenz 12:1–72

    Google Scholar 

  • Went FW (1940) Soziologie der Epiphyten eines tropischen Regenwaldes. Ann Jard Bot Buitenz 50:1–98

    Google Scholar 

  • Wester S, Zotz G (2011) Seed comas of bromeliads promote germination and early seedling growth by wick-like water uptake. J Trop Ecol 27:115–119

    Article  Google Scholar 

  • Wilder GJ (1986) Anatomy of first-order roots in the Cyclanthaceae (Monocotyledoneae). I. Epidermis, cortex, and pericycle. Can J Bot 64:2622–2644. doi:10.1139/b86-347

    Google Scholar 

  • Williams NH (1979) Subsidiary cells in the Orchidaceae: their general distribution with special reference to development in the Oncidieae. Bot J Linn Soc 78:41–66. doi:10.1111/j.1095-8339.1979.tb02185.x

    Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Imfeld SM, Heydinger DJ, Hart CE, Collier MH, Gribbins KM, Zettler LW (2010) Comparative water balance profiles of Orchidaceae seeds for epiphytic and terrestrial taxa endemic to North America. Plant Ecol 211:7–17. doi:10.1007/s11258-010-9765-2

    Google Scholar 

  • Yukawa T, Stern WL (2002) Comparative vegetative anatomy and systematics of Cymbidium (Cymbidieae: Orchidaceae). Bot J Linn Soc 138:383–419

    Article  Google Scholar 

  • Zhang S-B, Guan Z-J, Sun M, Zhang J-J, Cao K-F, Hu H (2012) Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae. PLoS One 7:e40080

    Google Scholar 

  • Zhang S-B, Sun M, Cao K-F, Hu H, Zhang J-L (2014) Leaf photosynthetic rate of tropical ferns is evolutionarily linked to water transport capacity. PLoS One 9:e84682. doi:10.1371/journal.pone.0084682

    Google Scholar 

  • Zimmerman JK (1990) Role of pseudobulbs in growth and flowering of Catasetum viridiflavum (Orchidaceae). Am J Bot 77:533–542

    Article  Google Scholar 

  • Zona S, Christenhusz MJM (2015) Litter-trapping plants: filter-feeders of the plant kingdom. Bot J Linn Soc 179:554–586. doi:10.1111/boj.12346

    Google Scholar 

  • Zotz G (2013) The systematic distribution of vascular epiphytes—a critical update. Bot J Linn Soc 171:453–481

    Article  Google Scholar 

  • Zotz G, Laube S (2005) Tank function in the epiphytic bromeliad, Catopsis sessiliflora. Ecotropica 11:63–68

    Google Scholar 

  • Zotz G, Thomas V (1999) How much water is in the tank? Model calculations for two epiphytic bromeliads. Ann Bot 83:183–192

    Article  Google Scholar 

  • Zotz G, Winkler U (2013) Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia 171:733–741

    Article  PubMed  Google Scholar 

  • Zotz G, Reichling P, Valladares F (2002) A simulation study on the importance of size-related changes in leaf morphology and physiology for carbon gain of an epiphytic bromeliad. Ann Bot 90:437–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zotz G, Wilhelm K, Becker A (2011) Heteroblasty—a review. Bot Rev 77:109–151. doi:10.1007/s12229-010-9062-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zotz, G. (2016). Functional Anatomy and Morphology. In: Plants on Plants – The Biology of Vascular Epiphytes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-39237-0_4

Download citation

Publish with us

Policies and ethics