Skip to main content

Biogeography: Latitudinal and Elevational Trends

  • Chapter
  • First Online:

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Vascular epiphytes show a stronger latitudinal gradient in species richness and abundance than most other plant groups and are therefore frequently used as a defining feature of tropical rainforests. Although well established, the autecological basis for this pattern is still unresolved. Although frost and drought are commonly stated as major factors, there is hardly any experimental evidence to substantiate such claims. There are also shifts in the taxonomic composition of epiphyte communities with latitude. Communities are generally dominated by orchids in the tropics and by ferns in the temperate zones. A similar pattern can be found when moving up in elevation in the tropics: epiphytic ferns have been found at up to 4500 m a.s.l. The elevational distribution of epiphytes is typically characterized by a mid-elevation bulge. Possible mechanistic explanations for this observation are discussed. A final section deals with diversity patterns within the tropics, from a regional to a continental scale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acharya KP, Vetaas OR, Birks HJB (2011) Orchid species richness along Himalayan elevational gradients. J Biogeogr 38:1821–1833. doi:10.1111/j.1365-2699.2011.02511.x

    Article  Google Scholar 

  • Arroyo MK, Cavieres L, Peñaloza A, Riveros M, Faggi AM (1995) Relaciones fitogeográficas y patrones regionales de riqueza de especies en la flora del bosque lluvioso templado de sudamérica. In: Armesto JJ, Villagrán C, Arroyo MK (eds) Ecología de los bosques nativos de Chile. Universidad de Chile, Santiago de Chile, pp 71–99

    Google Scholar 

  • Barve N, Martin C, Brunsell NA, Peterson AT (2014) The role of physiological optima in shaping the geographic distribution of Spanish moss. Glob Ecol Biogeogr 23:633–645. doi:10.1111/geb.12150

    Article  Google Scholar 

  • Bataghin FA, Muller A, Pires JSR, Fd B, Fushita AT, Scariot EC (2012) Riqueza e estratificação vertical de epífitas vasculares na Estação Ecológica de Jataí: área de Cerrado no Sudeste do Brasil. Hoehnea 39:615–626. doi:10.1590/s2236-89062012000400008

    Article  Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. General biology and related biota. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bir SS (1989) Evolutionary trends in the pteridophytic flora of India. In: Bir SS, Saggoo MIS (eds) Botany section 75th Indian science congress Pune, Pune, 1989. Today & Tomorrow’s Printers, New Delhi, pp 1–22

    Google Scholar 

  • Burns KC (2008) Meta-community structure of vascular epiphytes in a temperate rainforest. Botany 86:1252–1259. doi:10.1139/B08-084

    Article  Google Scholar 

  • Bussmann RW (2003) The vegetation of Reserva Biológica San Francisco, Zamora-Chinchipe, Southern Ecuador—a phytosociological synthesis. Lyonia 3:145–308

    Google Scholar 

  • Cardelús C, Colwell RK, Watkins JE Jr (2006) Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. J Ecol 94:144

    Article  Google Scholar 

  • Carvajal-Hernández CI, Krömer T, Vázquez-Torres M (2014) Species richness and floristic composition of ferns in humid montane forest and associated environments of central Veracruz, Mexico. Rev Mex Biodivers 85:491–501

    Article  Google Scholar 

  • Cascante-Marin A, Nivia-Ruiz A (2013) Neotropical flowering epiphyte diversity: local composition and geographic affinities. Biodivers Conserv 22:113–125. doi:10.1007/s10531-012-0404-1

    Article  Google Scholar 

  • Collinson ME (2000) Cainozoic evolution of modern plant communities and vegetation. In: Culver SJ, Rawson PF (eds) Biotic response to global change: the last 145 million years. Cambridge University Press, Cambridge, pp 223–243

    Chapter  Google Scholar 

  • Coomes DA, Grubb PJ (1996) Amazonian caatinga and related communities at La Esmeralda, Venezuela: forest structure, physiognomy and floristics, and control by soil factors. Vegetatio 122:167–191

    Article  Google Scholar 

  • Cuevas-Reyes P, Vega-Gutiérrez JI (2012) Cambios en la estructura, composición y fenología de plantas epífitas bajo diferentes estadios de sucesión vegetal en un bosque tropical seco. Biológicas 14:37–44

    Google Scholar 

  • Currie DJ, Kerr JT (2008) Tests of the mid-domain hypothesis: a review of the evidence. Ecol Monogr 78:3–18

    Article  Google Scholar 

  • Dassler CL, Farrar DR (2001) Significance of gametophyte form in long-distance colonization by tropical, epiphytic ferns. Brittonia 53:352–369

    Article  Google Scholar 

  • Dawson JW (1986) Floristic relationships of lowland rainforest phanerogams of New Zealand. Telopea 2:681–696

    Article  Google Scholar 

  • Garth RE (1964) The ecology of Spanish moss (Tillandsia usneoides): its growth and distribution. Ecology 45:470–481

    Article  Google Scholar 

  • Gentry AH, Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Ann Mo Bot Gard 74:205–233

    Article  Google Scholar 

  • Giesen W, Wulffraat S, Zieren M, Scholten L (2007) Mangrove guidebook of southeast Asia. FAO and Wetlands International, Bangkok

    Google Scholar 

  • Gómez MA, Winkler S (1991) Bromelias en manglares del Pacífico de Guatemala. Rev Biol Trop 39:207–214

    Google Scholar 

  • Gottsberger G, Morawetz W (1993) Development and distribution of the epiphytic flora in an Amazonian savanna in Brazil. Flora 188:145–151

    Google Scholar 

  • Grubb PJ, Lloyd JR, Pennington TD, Whitmore TC (1963) A comparison of montane and lowland rain forest in Ecuador. I. The forest structure, physiognomy, and floristics. J Ecol 51:567–601

    Article  Google Scholar 

  • Hassler M, Schmitt B (2015) Checklist of ferns and lycophytes of the world. https://worldplants.webarchiv.kit.edu/ferns/

  • Hofstede RGM, Dickinson KJM, Mark AF (2001) Distribution, abundance and biomass of epiphyte-lianoid communities in a New Zealand lowland Nothofagus-podocarp temperate rain forest: tropical comparisons. J Biogeogr 28:1033–1049

    Article  Google Scholar 

  • Ibisch PL, Boegner A, Nieder J, Barthlott W (1996) How diverse are neotropical epiphytes? An analysis based on the “Catalogue of the flowering plants and gymnosperms of Peru”. Ecotropica 2:13–28

    Google Scholar 

  • Ibisch PL, Kessler M, Barthlott W (2000) On the ecology, biogeography and diversity of the Bolivian epiphytic cacti. Bradleya 18:2–30

    Google Scholar 

  • Jalal JS, Jayanthi J (2015) An annotated checklist of the orchids of western Himalaya, India. Lankesteriana 15:07–50

    Article  Google Scholar 

  • Jetz W, McPherson JM, Guralnick RP (2012) Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol Evol 27:151–159

    Article  PubMed  Google Scholar 

  • Johansson D (1974) Ecology of vascular epiphytes in West African rain forest. Acta Phytogeogr Suec 59:1–136

    Google Scholar 

  • Kappen L (1964) Untersuchungen über den Jahreslauf der Frost-, Hitze- und Austrocknungsresistenz von Sporophyten einheimischer Polypodiaceen (Filicinae). Flora 155:123–166

    Google Scholar 

  • Karger DN, Kluge J, Krömer T, Hemp A, Lehnert M, Kessler M (2011) The effect of area on local and regional elevational patterns of species richness. J Biogeogr 38:1177–1185. doi:10.1111/j.1365-2699.2010.02468.x

    Article  Google Scholar 

  • Kessler M (2001a) Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes. Biodivers Conserv 10:1897–1921

    Article  Google Scholar 

  • Kessler M (2001b) Pteridophyte species richness in Andean forests in Bolivia. Biodivers Conserv 10:1473–1495

    Article  Google Scholar 

  • Kessler M (2002a) Environmental patterns and ecological correlates of range size among bromeliad communities of Andean forests in Bolivia. Bot Rev 68:100–127

    Article  Google Scholar 

  • Kessler M (2002b) Species richness and ecophysiological types among Bolivian bromeliad communities. Biodivers Conserv 11:987–1010

    Article  Google Scholar 

  • Kessler M, Hofmann S, Krömer T, Cicuzza D, Kluge J (2011a) The impact of sterile populations on the perception of elevational richness patterns in ferns. Ecography 34:123–131. doi:10.1111/j.1600-0587.2010.06371.x

    Article  Google Scholar 

  • Kessler M, Kluge J, Hemp A, Ohlemüller R (2011b) A global comparative analysis of elevational species richness patterns of ferns. Glob Ecol Biogeogr 20:868–880. doi:10.1111/j.1466-8238.2011.00653.x

    Article  Google Scholar 

  • Kluge J, Kessler M, Dunn RR (2006) What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Glob Ecol Biogeogr 15:358–371

    Article  Google Scholar 

  • Kramer KU (1993) Distribution patterns in major pteridophyte taxa relative to those of angiosperms. J Biogeogr 20:287–291

    Article  Google Scholar 

  • Kreft H, Köster N, Küper W, Nieder J, Barthlott W (2004) Diversity and biogeography of vascular epiphytes in Western Amazonia, Yasuní, Ecuador. J Biogeogr 31:1463–1476

    Article  Google Scholar 

  • Krömer T, Kessler M, Gradstein SR, Acebey A (2005) Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. J Biogeogr 32:1799–1809

    Article  Google Scholar 

  • Larson RJ (1992) Population dynamics of Encyclia tampensis in Florida. Selbyana 13:50–56

    Google Scholar 

  • MacMahon JA, Wagner FH (1985) The Mojave, Sonoran and Chihuahuan deserts of North America. In: Evenari M, Noy-Meir I, Goodall DW (eds) Hot deserts and arid shrublands, vol 12A, A ecosystems of the world. Elsevier, Amsterdam, pp 105–202

    Google Scholar 

  • Madison M (1977) Vascular epiphytes: their systematic occurrence and salient features. Selbyana 2:1–13

    Google Scholar 

  • Mayo SJ, Bogner J, Boyce P (1997) The genera of Araceae. Royal Botanic Gardens, Kew, London

    Google Scholar 

  • Migenis LE, Ackerman JD (1993) Orchid-phorophyte relationships in a forest watershed in Puerto Rico. J Trop Ecol 9:231–240

    Article  Google Scholar 

  • Murphy PG, Lugo AE (1986) Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica 18:89–96

    Article  Google Scholar 

  • Nadkarni NM, Solano R (2002) Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia 131:580–586

    Article  Google Scholar 

  • Nieder J, Barthlott W (2001) Epiphytes and their role in the tropical forest canopy. In: Nieder J, Barthlott W (eds) Epiphytes and canopy fauna of the Otonga rain forest (Ecuador), vol 2, Results of the Bonn—Quito epiphyte project, funded by the Volkswagen Foundation. Books on Demand, Bonn, pp 23–88

    Google Scholar 

  • Nieder J, Engwald S, Klawun M, Barthlott W (2000) Spatial distribution of vascular epiphytes (including hemiepiphytes) in a lowland Amazonian rain forest (Surumoni Crane Plot) of Southern Venezuela. Biotropica 32:385–396

    Article  Google Scholar 

  • Normand S, Ricklefs RE, Skov F, Bladt J, Tackenberg O, Svenning J-C (2011) Postglacial migration supplements climate in determining plant species ranges in Europe. Proc R Soc B Biol Sci 278:3644–3653. doi:10.1098/rspb.2010.2769

    Article  Google Scholar 

  • Oliver WRB (1930) New Zealand epiphytes. J Ecol 18:1–50

    Article  Google Scholar 

  • Partomihardjo T (2003) Colonisation of orchids on the Krakatau Islands. Telopea 10:299–310

    Article  Google Scholar 

  • Pérez-García EA, Meave JA (2006) Coexistence and divergence of tropical dry forests and savannas in southern Mexico. J Biogeogr 33:438–447

    Article  Google Scholar 

  • Phillips RD, Dixon KW, Peakall R (2012) Low population genetic differentiation in the Orchidaceae: implications for the diversification of the family. Mol Ecol 21:5208–5220. doi:10.1111/mec.12036

    Article  PubMed  Google Scholar 

  • Primack R, Corlett RT (2005) Tropical rain forests. Blackwell, Oxford

    Google Scholar 

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239

    Article  Google Scholar 

  • Richards PW (1996) The tropical rain forest—an ecological study, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Ricklefs RE, Latham RE, Qian H (1999) Global patterns of tree species richness in moist forests: distinguishing ecological influences and historical contingency. Oikos 86:369–373

    Article  Google Scholar 

  • Schaijes M, Malaisse F (2001) Diversity of Upper Katanga epiphytes (mainly orchids) and distribution in different vegetation units. Syst Geogr Plants 71:575–584

    Article  Google Scholar 

  • Schimper AFW (1888) Die epiphytische vegetation amerikas, vol 2, Botanische Mitteilungen aus den Tropen. Gustav Fischer, Jena

    Google Scholar 

  • Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallon S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428:553–557

    Article  CAS  PubMed  Google Scholar 

  • Sillett SC, Bailey MG (2003) Effects of tree crown structure on biomass of the epiphytic fern Polypodium scouleri (Polypodiaceae) in redwood forests. Am J Bot 90:255–261

    Article  PubMed  Google Scholar 

  • Silva IA, Ferreira AWC, Lima MIS, Soares JJ (2010) Networks of epiphytic orchids and host trees in Brazilian gallery forests. J Trop Ecol 26:127–137. doi:10.1017/S0266467409990551

    Google Scholar 

  • Sylvester SP, Sylvester MDPV, Kessler M (2014) The world’s highest vascular epiphytes found in the Peruvian Andes. Alp Botany 124:179–185. doi:10.1007/s00035-014-0130-2

    Article  Google Scholar 

  • Trejo-Torres JC, Ackerman JD (2001) Biogeography of the Antilles based on a parsimony analysis of orchid distributions. J Biogeogr 28:775–794

    Article  Google Scholar 

  • Tryon R (1970) Development and evolution of fern floras of Oceanic islands. Biotropica 2:76–84

    Article  Google Scholar 

  • Watkins JE Jr, Cardelus CL (2012) Ferns in an angiosperm world: cretaceous radiation into the epiphytic niche and diversification on the forest floor. Int J Plant Sci 173:695–710. doi:10.1086/665974

    Article  Google Scholar 

  • Watkins JE, Cardelús C, Colwell RK, Moran RC (2006) Species richness and distribution of ferns along an elevational gradient in Costa Rica. Am J Bot 93:73–83

    Article  Google Scholar 

  • Wester S, Mendieta Leiva G, Nauheimer L, Wanek W, Kreft H, Zotz G (2011) Diversity and biogeography of vascular epiphytes at Río Changuinola. Panama Flora 206:66–79. doi:10.1016/j.flora.2010.01.011

    Article  Google Scholar 

  • Willig MR (2003) Latitudinal gradients in biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Syst 34:273–309

    Article  Google Scholar 

  • Zhang S-B, Chen W-Y, Huang J-L, Bi Y-F, Yang X-F (2015) Orchid species richness along elevational and environmental gradients in Yunnan, China. PLoS One 10(11). doi:10.1371/journal.pone.0142621

    Google Scholar 

  • Zotz G (2003) Vascular epiphytes in the temperate zone—a bibliography. Selbyana 24:206–214

    Google Scholar 

  • Zotz G (2005) Vascular epiphytes in the temperate zones—a review. Plant Ecol 176:173–183

    Article  Google Scholar 

  • Zotz G, List C (2003) Zufallsepiphyten—Pflanzen auf dem Weg nach oben? Bauhinia 17:25–37

    Google Scholar 

  • Zotz G, Reuter N (2009) The effect of exposure to sea water on germination and vegetative growth of an epiphytic bromeliad. J Trop Ecol 25:311–319

    Article  Google Scholar 

  • Zotz G, Schultz S (2008) The vascular epiphytes of a lowland forest in Panama—species composition and spatial structure. Plant Ecol 195:131–141. doi:10.1007/s11258-007-9310-0

    Article  Google Scholar 

  • Zotz G, Bermejo P, Dietz H (1999) The epiphyte vegetation of Annona glabra on Barro Colorado Island, Panama. J Biogeogr 26:761–776

    Article  Google Scholar 

  • Zotz G, Mendieta Leiva G, Wagner K (2014) Vascular epiphytes at the treeline—composition of species assemblages and population biology. Flora 209:385–390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zotz, G. (2016). Biogeography: Latitudinal and Elevational Trends. In: Plants on Plants – The Biology of Vascular Epiphytes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-39237-0_3

Download citation

Publish with us

Policies and ethics