Skip to main content

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Epiphytes existed in forests and other vegetation long before the advent of human civilization and the current human domination of the globe. As part of the forest, epiphytes were affected by human activities without being the actual target, e.g., when slash-and-burn agriculture was used for subsistence. For a long time, however, humans have also been directly utilizing certain epiphytes, similar to many other natural resources, for curative purposes as well as adornment or in cultural activities. In the last decades, the human impact on the biosphere has increased to an alarming level which, not surprisingly, also affects epiphytes more and more. Both ongoing habitat destruction/deterioration and climate change urge us to understand the response of epiphytes to these changes and to develop appropriate conservation measures. Humans impact epiphytes not only by habitat destruction or overexploitation: the large-scale movements of plants and diaspores have frequently eliminated natural barriers for dispersal, raising the question of the potential invasiveness of epiphytes. Invasive species are often considered a major threat to global biodiversity—if this also applies to epiphytes is little understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acebey A, Krömer T, Maass BL, Kessler M (2010) Ecoregional distribution of potentially useful species of Araceae and Bromeliaceae as non-timber forest products in Bolivia. Biodivers Conserv 19:2553–2564. doi:10.1007/s10531-010-9859-0

    Article  Google Scholar 

  • Ackerman JD (2007) Invasive orchids: weed we hate to love? Lankesteriana 7:19–21

    Google Scholar 

  • Adhikari YP, Fischer HS, Fischer A (2012) Host tree utilization by epiphytic orchids in different land-use intensities in Kathmandu Valley, Nepal. Plant Ecol 213:1393–1412. doi:10.1007/s11258-012-0099-0

    Article  Google Scholar 

  • Anonymous (2010) KISC Roadside Survey Weekly Report 4

    Google Scholar 

  • Armenta-Montero S, Carvajal-Hernandez CI, Ellis EA, Krömer T (2015) Distribution and conservation status of Phlegmariurus (Lycopodiaceae) in the state of Veracruz, Mexico. Trop Conserv Sci 8:114–137

    Google Scholar 

  • Armesto JJ, Smith-Ramírez C, Carmona MR, Celis-Diez JL, Díaz IA, Gaxiola A, Gutiérrez AG, Nunez-Avila MC, Pérez CA, Rozzi R (2009) Old-growth temperate rainforests of South America: Conservation, plant-animal interactions, and baseline biogeochemical processes. In: Wirth C, Gleixner G, Heimann M (eds) Old-Growth Forests, vol 207, Ecological Studies. Springer, Berlin, pp 367–390. doi:10.1007/978-3-540-92706-8_16

    Chapter  Google Scholar 

  • Baider C, Florens FBV, Rakotoarivelo F, Bosser J, Pailler T (2012) Two new records of Jumellea (Orchidaceae) for Mauritius (Mascarene Islands) and their conservation status. Phytotaxa 52:21–28

    Article  Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the earth's sixth mass extinction already arrived? Nature 471:51–57

    Article  CAS  PubMed  Google Scholar 

  • Barthlott W, Schmit-Neuerburg V, Nieder J, Engwald S (2001) Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecol 152:145–156

    Article  Google Scholar 

  • Benavides AM, Wolf JHD, Duivenvoorden JF (2006) Recovery and succession of epiphytes in upper Amazonian fallows. J Trop Ecol 22:705–717

    Article  Google Scholar 

  • Benzing DH (1998) Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Clim Chang 39:519–540

    Article  Google Scholar 

  • Boelter CR, Zartman CE, Fonseca CR (2011) Exotic tree monocultures play a limited role in the conservation of Atlantic Forest epiphytes. Biodivers Conserv 20:1255–1272. doi:10.1007/s10531-011-0026-z

    Article  Google Scholar 

  • Brighigna L, Papini A, Mosti S, Cornia A, Bocchini P, Galletti G (2002) The use of tropical bromeliads (Tillandsia spp.) for monitoring atmospheric pollution in the town of Florence, Italy. Rev Biol Trop 50:577–584

    PubMed  Google Scholar 

  • Bryan CL (2011) Ecology of vascular epiphytes in urban forests with special reference to the shrub epiphyte Griselinia lucida MSc thesis. University of Waikato, Hamilton

    Google Scholar 

  • Cascante-Marín A, Wolf JHD, Oostermeijer JGB, den Nijs JCM, Sanahuja O, Duran-Apuy A (2006) Epiphytic bromeliad communities in secondary and mature forest in a tropical premontane area. Basic Appl Ecol 7:520–532

    Article  Google Scholar 

  • Cascante-Marín A, Wolf JHD, Oostermeijer JGB, Den Nijs JCM (2008) Establishment of epiphytic bromeliads in successional tropical premontane forests in Costa Rica. Biotropica 40:441-448. doi:DOI: 10.1111/j.1744-7429.2008.00403.x

  • Chinsamy M, Finnie JF, Van Staden J (2011) The ethnobotany of South African medicinal orchids. S Afr J Bot 77:2–9. doi:10.1016/j.sajb.2010.09.015

    Article  Google Scholar 

  • Cooper TM, Frank JH, Cave RD (2014) Loss of phytotelmata due to an invasive bromeliad-eating weevil and its-potential effects on faunal diversity and biogeochemical cycles. Acta Oecol Int J Ecol 54:51–56. doi:10.1016/j.actao.2013.01.016

    Article  Google Scholar 

  • Creese C, Lee A, Sack L (2011) Drivers of morphological diversity and distribution in the Hawaiian fern flora: Trait associations with size, growth form, and environment. Am J Bot 98:956–966. doi:10.3732/ajb.1000237

    Article  PubMed  Google Scholar 

  • Cruz-Angon A, Baena ML, Greenberg R (2009) The contribution of epiphytes to the abundance and species richness of canopy insects in a Mexican coffee plantation. J Trop Ecol 25:453-463. doi:doi:10.1017/S0266467409990125

  • Davey M (2011) Gardens by the Bay: Ecologically Reflective Design. Architectural Design 81:108–111. doi:DOI: 10.1002/ad.1327

  • del Carmen Méndez García EM, Mondragón D (2012) The use of epiphytic bromeliads in easter festivities in Zaachila, Oaxaca, Mexico. J Brom Soc 62:145–192

    Google Scholar 

  • Derraik JGB (2005) Mosquitoes breeding in phytotelmata in native forests in the Wellington region, New Zealand. N Z J Ecol 29:185–191

    Google Scholar 

  • Díaz IA, Sieving KE, Peña-Foxon M, Armesto JJ (2012) A field experiment links forest structure and biodiversity: epiphytes enhance canopy invertebrates in Chilean forests. Ecosphere 3:art5. doi:10.1890/es11-00168.1

    Google Scholar 

  • Einzmann HJR, Beyschlag J, Hofhansl F, Wanek W, Zotz G (2015) Host tree phenology affects vascular epiphytes at the physiological, demographic and community level. AoB Plants 7:plu073

    Google Scholar 

  • Elliott DD, Ticktin T (2013) Epiphytic plants as NTFPs from the forest canopies: Priorities for management and conservation. In: Lowman MD, Devy S, Ganesh T (eds) Treetops at risk. Challenges of Global Canopy Ecology and Conservation. Springer, New York, pp 435–444

    Chapter  Google Scholar 

  • Falla J, Laval-Gilly P, Henryon M, Morlot D, Ferard JF (2000) Biological air quality monitoring: a review. Environ Monit Assess 64:627–644

    Article  CAS  Google Scholar 

  • Flores-Palacios A, García-Franco JG (2006) The relationship between tree size and epiphyte species richness: testing four different hypotheses. J Biogeogr 33:323–330

    Article  Google Scholar 

  • Flores-Palacios A, Valencia-Diaz S (2007) Local illegal trade reveals unknown diversity and involves a high species richness of wild vascular epiphytes. Biol Conserv 136:372–387

    Article  Google Scholar 

  • Foxcroft LC, Richardson DM, Wilson JRU (2008) Ornamental plants as invasive aliens: Problems and solutions in Kruger National Park, South Africa. Environ Manag 41:32–51. doi:10.1007/s00267-007-9027-9

    Article  Google Scholar 

  • García-González A, Damon A, Iturbide FA, Olalde-Portugal V (2013) Reproduction of Oncidium poikilostalix (Orchidaceae), potentially invading coffee plantations in Soconusco, Chiapas, Mexico. Plant Ecol Evol 146:36–44. doi:10.5091/plecevo.2013.674

    Article  Google Scholar 

  • Gill LS, Onyibe HI (1986) Phytosociological studies of epiphytic flora of oil palm (Elaeis guineensis Jacq.) in Benin City, Nigeria. Feddes Repertorium 97:691–695

    Google Scholar 

  • Haeckel IB (2008) The “arco floral”: Ethnobotany of Tillandsia and Dasylirion spp. in a Mexican religious adornment. Econ Bot 62:90–95. doi:10.1007/s12231-008-9009-8

    Article  Google Scholar 

  • Hambler C, Canney SM (2012) Conservation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hietz P (2005) Conservation of vascular epiphyte diversity in Mexican coffee plantations. Conserv Biol 19:391–399

    Article  Google Scholar 

  • Hietz P, Buchberger G, Winkler M (2006) Effect of forest disturbance on abundance and distribution of epiphytic bromeliads and orchids. Ecotropica 12:103–112

    Google Scholar 

  • Hietz-Seifert U, Hietz P, Guevara S (1995) Epiphyte vegetation and diversity on remnant trees after forest clearance in Southern Veracruz, Mexico. Biol Conserv 75:103–111

    Article  Google Scholar 

  • Holt RD (1990) The microevolutionary consequences of climate change. Trends Ecol Evol 5:311–315

    Article  CAS  PubMed  Google Scholar 

  • Hornung-Leoni CT (2011) Progress on ethnobotanical uses of Bromeliaceae in Latin America. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas 10:297–314

    Google Scholar 

  • Hossain MM (2011) Therapeutic orchids: traditional uses and recent advances - An overview. Fitoterapia 82:102–140. doi:10.1016/j.fitote.2010.09.007

    Article  PubMed  Google Scholar 

  • Hundera K, Aerts R, De Beenhouwer M, Van Overtveld K, Helsen K, Muys B, Honnay O (2013) Both forest fragmentation and coffee cultivation negatively affect epiphytic orchid diversity in Ethiopian moist evergreen Afromontane forests. Biol Conserv 159:285–291. doi:10.1016/j.biocon.2012.10.029

    Article  Google Scholar 

  • International Tropical Timber Organization (2002) ITTO Guidelines for the restoration, management and rehabilitation of degraded and secondary tropical forests. ITTO Policy Development Series, ITTO, Minato-Mirai

    Google Scholar 

  • Izuddin M, Webb E (2015) The influence of tree architecture, forest remnants, and dispersal syndrome on roadside epiphyte diversity in a highly urbanized tropical environment. Biodivers Conserv 24:2063–2077. doi:10.1007/s10531-015-0932-6

    Article  Google Scholar 

  • Kato MJ, Furlan M (2007) Chemistry and evolution of the Piperaceae. Pure Appl Chem 79:529–538. doi:10.1351/pac200779040529

    Article  CAS  Google Scholar 

  • Köster N, Friedrich K, Nieder J, Barthlott W (2009) Conservation of epiphyte diversity in an Andean landscape transformed by human land use. Conserv Biol 23:911–919

    Article  PubMed  Google Scholar 

  • Krömer T, Gradstein SR (2003) Species richness of vascular epiphytes in two primary forests and fallows in the Bolivian Andes. Selbyana 24:190–195

    Google Scholar 

  • Krömer T, Acebey AR, Smith AR (2013) Taxonomic update, distribution and conservation status of grammitid ferns (Polypodiaceae, Polypodiopsida) in Veracruz State, Mexico. Phytotaxa 82:29–44

    Article  Google Scholar 

  • Krömer T, García-Franco JG, Toledo Aceves T (2014) Epífitas vasculares como bioindicadores de la calidad forestal: impacto antrópico sobre su diversidad y composición. In: González-Zuarth CA, Vallarino A, Pérez-Jimenez JC, Low-Pfeng AM (eds) Bioindicadores: guardianes de nuestro futuro ambiental. Instituto Nacional de Ecología y Cambio Climático (INECC)—El Colegio de la Frontera Sur (ECOSUR), México, D. F. y Campeche, pp 606-623

    Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571. doi:doi:10.1016/j.tree.2009.04.011

  • Larrea ML, Werner FA (2010) Response of vascular epiphyte diversity to different land-use intensities in a neotropical montane wet forest. For Ecol Manag 260:1950–1955

    Article  Google Scholar 

  • Laube S, Zotz G (2006a) Long-term changes of the vascular epiphyte assemblage on the palm Socratea exorrhiza in a lowland forest in Panama. J Veg Sci 17:307–314

    Google Scholar 

  • Laube S, Zotz G (2006b) Neither host-specific nor random: vascular epiphytes on three tree species in a Panamanian lowland forest. Ann Bot 97:1103–1114

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurance WF, Bierregaard RO (1997) Tropical forest remnants: ecology, management, and conservation of fragmented communities. University of Chicago Press, Chicago

    Google Scholar 

  • Laurance WF, Delamônica P, Laurance SG, Vasconcelos HL, Lovejoy TE (2000) Rainforest fragmentation kills big trees. Nature 404:836

    Article  CAS  PubMed  Google Scholar 

  • Leao TCC, Fonseca CR, Peres CA, Tabarelli M (2014) Predicting Extinction Risk of Brazilian Atlantic Forest Angiosperms. Conserv Biol 28:1349–1359. doi:10.1111/cobi.12286

    Article  PubMed  Google Scholar 

  • Li P, Pemberton R, Zheng G (2015) Foliar trichome-aided formaldehyde uptake in the epiphytic Tillandsia velutina and its response to formaldehyde pollution. Chemosphere 119:662–667. doi:10.1016/j.chemosphere.2014.07.079

    Article  CAS  PubMed  Google Scholar 

  • Lindenmayer DB, Laurance WF, Franklin JF (2012) Global decline in large old trees. Science 338:1305–1306. doi:10.1126/science.1231070

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Luo Y-B, Heinen J, Bhat M, Liu Z-J (2014) Eat your orchid and have it too: a potentially new conservation formula for Chinese epiphytic medicinal orchids. Biodivers Conserv 23:1215–1228. doi:10.1007/s10531-014-0661-2

    Article  Google Scholar 

  • Lopez L, Silva E, Beltrão M, Leandro R, Barbosa J, Beserra E (2011) Effect of tank bromeliad micro-environment on Aedes aegypti larval mortality. Hydrobiologia 665:257–261. doi:10.1007/s10750-011-0605-8

    Article  CAS  Google Scholar 

  • Lovejoy TE, Hannah L (eds) (2005) Climate change and biodiversity. Yale University Press, New Haven & London

    Google Scholar 

  • Lugo AE, Scatena FN (1992) Epiphytes and climate change research in the Caribbean: a proposal. Selbyana 13:123–130

    Google Scholar 

  • Medeiros AC, Loope LL, Anderson SJ (1993) Differential colonization of epiphytes on native (Cibotium spp.) and alien (Cyathea cooperi) tree ferns in a Hawaiian rain forest. Selbyana 14:71–74

    Google Scholar 

  • Mocellin MG, Simoes TC, do Nascimento TFS, Teixeira MLF, Lounibos LP, de Oliveira RL (2009) Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus? Mem Inst Oswaldo Cruz 104:1171–1176

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondragón D, Ticktin T (2011) Demographic effects of harvesting epiphytic bromeliads and an alternative approach to collection. Conserv Biol 25:797–807. doi:10.1111/j.1523-1739.2011.01691.x

    Article  Google Scholar 

  • Mondragón D, Santos-Moreno A, Damon A (2009) Epiphyte diversity on coffee bushes: A management question? J Sustain Agric 33:703–715. doi:10.1080/10440040903235227

    Article  Google Scholar 

  • Mudd RG (2004) Significance of the epiphyte layer to stem water storage in native and invaded tropical montane cloud forests in Hawai’i. BSc thesis. University of Hawai’i at Manoa, Honolulu

    Google Scholar 

  • Nadkarni NM, Solano R (2002) Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia 131:580–586

    Article  Google Scholar 

  • Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an amazon forest. Ecology 88:2259–2269

    Article  PubMed  Google Scholar 

  • Obermüller F, Silveira M, Salimon C, Daly D (2012) Epiphytic (including hemiepiphytes) diversity in three timber species in the southwestern Amazon, Brazil. Biodivers Conserv 21:565–575. doi:10.1007/s10531-011-0201-2

    Article  Google Scholar 

  • Overpeck JT, Webb RS, Webb T (1992) Mapping Eastern North American vegetation change of the past 18 Ka - no-analogs and the future. Geology 20:1071–1074

    Article  Google Scholar 

  • Phillips OL, Vasquez R, Arroyo L, Baker TR, Killeen TJ, Lewis SL, Malhi Y, Mendoza AM, Neill DA, Núnez Vargas P, Alexiades M, Cerón C, Di Fiore A, Erwin T, Jardim A, Palacios W, Saldias M, Vinceti B (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774

    Article  CAS  PubMed  Google Scholar 

  • Phillips OL, Vasquez Martinez R, Monteagudo Mendoza A, Baker TR (2005) Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology 86:1250

    Article  Google Scholar 

  • Pittendrigh CS (1948) The Bromeliad-Anopheles-Malaria complex in Trinidad I—The Bromeliad flora. Evolution 2:58–89

    Article  CAS  PubMed  Google Scholar 

  • Poltz K, Zotz G (2011) Vascular epiphytes on isolated pasture trees along a rainfall gradient in the lowlands of Panama. Biotropica 43:165–172. doi:10.1111/j.1744-7429.2010.00669.x

    Article  Google Scholar 

  • Prescott GW, Edwards DP, Foster WA (2015) Retaining biodiversity in intensive farmland: epiphyte removal in oil palm plantations does not affect yield. Ecol Evol 5:1944–1954. doi:10.1002/ece3.1462

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos P, Colareda GA, Rosella MA, Debenedetti SL, Spegazzini ED, Consolini AE (2012) Phytochemical profile and anti-inflammatory effect of the orchid Catasetum macroglossum. Lat Am J Pharm 31:62–67

    Google Scholar 

  • Riefner RE jr (2016) Ficus microcarpa (Moraceae) naturalized in Southern California, U. S. A.: Linking plant, pollinator, and suitable microhabitats to document the invasion process. Phytologia 98:42–75

    Google Scholar 

  • Rodriguez JH, Weller SB, Wannaz ED, Klumpp A, Pignata ML (2011) Air quality biomonitoring in agricultural areas nearby to urban and industrial emission sources in Córdoba province, Argentina, employing the bioindicator Tillandsia capillaris. Ecol Indic 11:1673–1680. doi:10.1016/j.ecolind.2011.04.015

    Article  CAS  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Sanger JC, Kirkpatrick JB (2014) Epiphyte assemblages respond to host life-form independently of variation in microclimate in lower montane cloud forest in Panama. J Trop Ecol 30:625–628. doi:10.1017/s0266467414000492

    Article  Google Scholar 

  • Shoo LP, Freebody K, Kanowski J, Catterall CP (2016) Slow recovery of tropical old-field rainforest regrowth and the value and limitations of active restoration. Conserv Biol 30:121–132. doi:10.1111/cobi.12606

    Article  PubMed  Google Scholar 

  • Simberloff D (1995) Why do introduced species appear to devastate islands more than mainland areas? Pacific Sci 49:87–97

    Google Scholar 

  • Somashekarappa HM, Narayana Y, Radhakrishna AP, Karunakara N, Balakrishna KM, Siddappa K (1996) Bioindicators in the tropical forest of Kaiga environment. J Environ Radioact 31:189–198

    Article  CAS  Google Scholar 

  • Spake R, Ezard THG, Martin PA, Newton AC, Doncaster CP (2015) A meta-analysis of functional group responses to forest recovery outside of the tropics. Conserv Biol 29:1695–1703. doi:10.1111/cobi.12548

    Article  PubMed  PubMed Central  Google Scholar 

  • Sporn SG, Bos MM, Gradstein SR (2007) Is productivity of cacao impeded by epiphytes? An experimental approach. Agric Ecosyst Environ 122:490–493

    Article  Google Scholar 

  • Suffredini IB, Bacchi EM, Sertie JAAA (1999) Antiulcer action of Microgramma squamulosa (Kaulf.) Sota. J Ethnopharmacol 65:217–223

    Article  CAS  PubMed  Google Scholar 

  • Tejedor A, McAlpin BW (2000) Ophioglossum pendulum L. naturalized in Miami, Dade County, Florida. Am Fern J 90:46–47

    Article  Google Scholar 

  • Toledo-Aceves T, Mehltreter K, Garcia-Franco JG, Hernandez-Rojas A, Sosa VJ (2013) Benefits and costs of epiphyte management in shade coffee plantations. Agric Ecosyst Environ 181:149–156. doi:10.1016/j.agee.2013.09.026

    Article  Google Scholar 

  • Toledo-Aceves T, Garcia-Franco JG, Lopez-Barrera F (2014) Bromeliad rain: An opportunity for cloud forest management. For Ecol Manag 329:129–136. doi:10.1016/j.foreco.2014.06.022

    Article  Google Scholar 

  • Turner IM, Tan HTW, Wee YC, Ibrahim AB, Chew PT, Corlett RT (1994) A study of plant species extinction in Singapore: lessons for the conservation of tropical biodiversity. Conserv Biol 8:705–712

    Article  Google Scholar 

  • van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245

    Article  PubMed  Google Scholar 

  • Vendrame W, Faria RT, Sorace M, Sahyun SA (2014) Orchid cryopreservation. Ciência e Agrotecnologia 38:213–229

    Article  Google Scholar 

  • Vtorova VN, Sergeeva TK (1999) Assessing the environmental quality of ecosystems in southern Vietnam. Ekologiya Moscow 30:20–25

    Google Scholar 

  • Wang JH, Luo JP, Zha XQ, Feng BJ (2010) Comparison of antitumor activities of different polysaccharide fractions from the stems of Dendrobium nobile Lindl. Carbohydr Polym 79:114–118. doi:10.1016/j.carbpol.2009.07.032

    Article  CAS  Google Scholar 

  • Werner FA (2011) Reduced growth and survival of vascular epiphytes on isolated remnant trees in a recent tropical montane forest clear-cut. Basic Appl Ecol 12:172–181. doi:10.1016/j.baae.2010.11.002

    Article  Google Scholar 

  • Werner FA, Köster N, Kessler M, Gradstein SR (2011) Is the resilience of epiphyte assemblages to human disturbance a function of local climate? Ecotropica 17:15–20

    Google Scholar 

  • Wolf JHD, Konings CJF (2001) Toward the sustainable harvesting of epiphytic bromeliads: a pilot study from the highlands of Chiapas, Mexico. Biol Conserv 101:23–31

    Article  Google Scholar 

  • Woods CL, DeWalt SJ (2013) The conservation value of secondary forests for vascular epiphytes in Central Panama. Biotropica 45:119–127. doi:10.1111/j.1744-7429.2012.00883.x

    Article  Google Scholar 

  • Wright SJ (2010) The future of tropical forests. Ann N Y Acad Sci 1195:1–27. doi:10.1111/j.1749-6632.2010.05455.x

    Article  PubMed  Google Scholar 

  • Zhou L, Tian Y, Myneni RB, Ciais P, Saatchi S, Liu YY, Piao S, Chen H, Vermote EF, Song C, Hwang T (2014) Widespread decline of Congo rainforest greenness in the past decade. Nature 509:86–90. doi:10.1038/nature13265

    Article  CAS  PubMed  Google Scholar 

  • Zotz G (2005) Differences in vital demographic rates in three populations of the epiphytic bromeliad, Werauhia sanguinolenta. Acta Oecol 28:306–312

    Article  Google Scholar 

  • Zotz G, Bader MY (2009) Epiphytic plants in a changing world: global change effects on vascular and non-vascular epiphytes. Progr Bot 70:147–170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zotz, G. (2016). Epiphytes and Humans. In: Plants on Plants – The Biology of Vascular Epiphytes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-39237-0_10

Download citation

Publish with us

Policies and ethics