Skip to main content

Integrable Turbulence with Nonlinear Random Optical Waves

  • Chapter
  • First Online:
Rogue and Shock Waves in Nonlinear Dispersive Media

Part of the book series: Lecture Notes in Physics ((LNP,volume 926))

  • 1260 Accesses

Abstract

The field of integrable turbulence deals with the general question of statistical changes that are experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In this chapter, we specifically focus on the one-dimensional nonlinear Schrödinger equation that describes quantitatively very well experiments performed with single mode fibers and optical waves randomly fluctuating in time. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing propagation regimes. Heavy-tailed deviations from gaussian statistics are observed in focusing regime while low-tailed deviations from gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum change with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regime, we evidence the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Kolmogorov-Zakharov cascade may appear when the spectrum (i.e. scales) of nonlinear random waves can be divided into three parts: a pumping spectral range (with an external source of energy, often at large scales), a spectral range with dissipation (often at small scales) and an intermediate inertial range with no dissipation [1, 2]. On the other hand, thermalization emerges in some systems without dissipation and pumping.

  2. 2.

    In the process of wave thermalization, the “equipartition of energy” corresponds to the equipartition of linear kinetic energy (linear part of the Hamiltonian).

  3. 3.

    The resonances in wave mixing are determined by double equalities involving frequencies and wave vectors of Fourier components. In the case of one dimensional four-wave mixing, these equalities are k 1 + k 2 = k 3 + k 4 and ω 1(k 1) +ω 2(k 2) = ω 3(k 3) +ω 4(k 4). ω(k) is the linear dispersion relation. For Eq. (1) where ω(k) = k 2, it is straightforward to show that the two resonant conditions imply k 1 = k 3 or k 1 = k 4 which is a trivial interaction (no energy is exchanged among different Fourier components). In the case of the integrable 1D-NLSE, the changes of the spectrum and of the statistical properties are thus only induced by non resonant terms.

  4. 4.

    We use in this chapter the usual and natural variables (t, x). Note that in single optical fiber experiments, the time t has to be replaced by the evolution variable z that represents the propagation distance along the fiber. The variable of x “becomes” the physical time t. Time and space are thus exchanged and in this case the 1D-NLSE takes the form of Eq. (5).

References

  1. Nazarenko, S.: Wave Turbulence. Lecture Notes in Physics. Springer, Berlin, Heidelberg (2011). 10.1007/978-3-642-15942-8

    Book  MATH  Google Scholar 

  2. Zakharov, V., L’vov, V., Falkovich, G.: Kolmogorov Spectra of Turbulence I. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  3. Newell, A.C., Rumpf, B.: Wave turbulence. Annu. Rev. Fluid Mech. 43, 59–78 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Newell, A.C., Nazarenko, S., Biven, L.: Wave turbulence and intermittency. Physica D 152–153, 520–550 (2001). Advances in Nonlinear Mathematics and Science: A Special Issue to Honor Vladimir Zakharov

    Google Scholar 

  5. Dyachenko, S., Newell, A., Pushkarev, A., Zakharov, V.: Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear schrödinger equation. Physica D 57 (1–2), 96–160 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Connaughton, C., Josserand, C., Picozzi, A., Pomeau, Y., Rica, S.: Condensation of classical nonlinear waves. Phys. Rev. Lett. 95, 263901 (2005)

    Article  ADS  Google Scholar 

  7. Aschieri, P., Garnier, J., Michel, C., Doya, V., Picozzi, A.: Condensation and thermalization of classical optical waves in a waveguide. Phys. Rev. A 83, 033838 (2011)

    Article  ADS  Google Scholar 

  8. Zakharov, V., Dias, F., Pushkarev, A.: One-dimensional wave turbulence. Phys. Rep. 398 (1), 1–65 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bortolozzo, U., Laurie, J., Nazarenko, S., Residori, S.: Optical wave turbulence and the condensation of light. J. Opt. Soc. Am. B 26, 2280–2284 (2009)

    Article  ADS  Google Scholar 

  10. Barviau, B., Kibler, B., Picozzi, A.: Wave-turbulence approach of supercontinuum generation: influence of self-steepening and higher-order dispersion. Phys. Rev. A 79, 063840 (2009)

    Article  ADS  Google Scholar 

  11. Picozzi, A.: Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics. Opt. Express 15, 9063 (2007)

    Article  ADS  Google Scholar 

  12. Picozzi, A., Garnier, J., Hansson, T., Suret, P., Randoux, S., Millot, G., Christodoulides, D.: Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys. Rep. 542 (1), 1–132 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  13. Michel, C., Haelterman, M., Suret, P., Randoux, S., Kaiser, R., Picozzi, A.: Thermalization and condensation in an incoherently pumped passive optical cavity. Phys. Rev. A 84 (3), 033848 (2011)

    Article  ADS  Google Scholar 

  14. Conforti, M., Mussot, A., Fatome, J., Picozzi, A., Pitois, S., Finot, C., Haelterman, M., Kibler, B., Michel, C., Millot, G.: Turbulent dynamics of an incoherently pumped passive optical fiber cavity: quasisolitons, dispersive waves, and extreme events. Phys. Rev. A 91, 023823 (2015)

    Article  ADS  Google Scholar 

  15. Suret, P., Picozzi, A., Randoux, S.: Wave turbulence in integrable systems: nonlinear propagation of incoherent optical waves in single-mode fibers. Opt. Express 19, 17852–17863 (2011)

    Article  ADS  Google Scholar 

  16. Turitsyn, S.K., Bednyakova, A.E., Fedoruk, M.P., Papernyi, S.B., Clements, W.R.L.: Inverse four-wave mixing and self-parametric amplification in optical fibre. Nat. Photonics 9, 608 (2015)

    Article  ADS  Google Scholar 

  17. Turitsyna, E.G., Smirnov, S.V., Sugavanam, S., Tarasov, N., Shu, X., Podivilov, S.B.E., Churkin, D., Falkovich, G., Turitsyn, S.: The laminar-turbulent transition in a fibre laser. Nat. Photonics 7, 783–786 (2013)

    Article  ADS  Google Scholar 

  18. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Article  ADS  Google Scholar 

  19. Chabchoub, A., Hoffmann, N., Onorato, M., Genty, G., Dudley, J.M., Akhmediev, N.: Hydrodynamic supercontinuum. Phys. Rev. Lett. 111, 054104 (2013)

    Article  ADS  Google Scholar 

  20. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The peregrine soliton in nonlinear fibre optics. Nature Physics 6 (10), 790–795 (2010)

    Article  ADS  Google Scholar 

  21. Kibler, B., Fatome, J., Finot, C., Millot, G., Genty, G., Wetzel, B., Akhmediev, N., Dias, F., Dudley, J.M.: Observation of kuznetsov-ma soliton dynamics in optical fibre. Sci. Rep. 2 (2012)

    Google Scholar 

  22. Frisquet, B., Kibler, B., Millot, G.: Collision of akhmediev breathers in nonlinear fiber optics. Phys. Rev. X 3 (4), 041032 (2013)

    Google Scholar 

  23. Kibler, B., Chabchoub, A., Gelash, A., Akhmediev, N., Zakharov, V.E.: Superregular breathers in optics and hydrodynamics: omnipresent modulation instability beyond simple periodicity. Phys. Rev. X 5, 041026 (2015).

    Google Scholar 

  24. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373 (6), 675–678 (2009)

    Article  ADS  MATH  Google Scholar 

  25. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photonics 8, 755 (2014)

    Article  ADS  Google Scholar 

  26. Toenger, S., Godin, T., Billet, C., Dias, F., Erkintalo, M., Genty, G., Dudley, J.M.: Emergent rogue wave structures and statistics in spontaneous modulation instability. Sci. Rep. 5, Paper No. 10380 (2015)

    Google Scholar 

  27. Frisch, U.: Turbulence, the Legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  28. Falcon, E., Fauve, S., Laroche, C.: Observation of intermittency in wave turbulence. Phys. Rev. Lett. 98, 154501 (2007)

    Article  ADS  Google Scholar 

  29. Falcon, E., Roux, S.G., Laroche, C.: On the origin of intermittency in wave turbulence. Europhys. Lett. 90 (3), 34005 (2010)

    Article  ADS  Google Scholar 

  30. Nazarenko, S., Lukaschuk, S., McLelland, S., Denissenko, P.: Statistics of surface gravity wave turbulence in the space and time domains. J. Fluid Mech. 642, 395–420 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Fatome, J., Finot, C., Millot, G., Armaroli, A., Trillo, S.: Observation of optical undular bores in multiple four-wave mixing. Phys. Rev. X 4, 021022 (2014)

    Google Scholar 

  32. Randoux, S., Walczak, P., Onorato, M., Suret, P.: Intermittency in integrable turbulence. Phys. Rev. Lett. 113, 113902 (2014)

    Article  ADS  Google Scholar 

  33. Zakharov, V.E.: Turbulence in integrable systems. Stud. Appl. Math. 122 (3), 219–234 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zakharov, V.E., Gelash, A.A.: Nonlinear stage of modulation instability. Phys. Rev. Lett. 111, 054101 (2013)

    Article  ADS  Google Scholar 

  35. Pelinovsky, E., Shurgalina, E., Sergeeva, A., Talipova, T., El, G., Grimshaw, R.: Two-soliton interaction as an elementary act of soliton turbulence in integrable systems. Phys. Lett. A 377 (3–4), 272–275 (2013)

    Article  ADS  MATH  Google Scholar 

  36. Agafontsev, D., Zakharov, V.E.: Integrable turbulence and formation of rogue waves. Nonlinearity 28 (8), 2791 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Walczak, P., Randoux, S., Suret, P.: Optical rogue waves in integrable turbulence. Phys. Rev. Lett. 114, 143903 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. Soh, D.B.S., Koplow, J.P., Moore, S.W., Schroder, K.L., Hsu, W.L.: The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers. Opt. Express 18, 22393–22405 (2010)

    Article  ADS  Google Scholar 

  39. Barviau, B., Randoux, S., Suret, P.: Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber. Opt. Lett. 31, 1696 (2006)

    Article  ADS  Google Scholar 

  40. Onorato, M., Osborne, A.R., Serio, M., Damiani, T.: Occurrence of freak waves from envelope equations in random ocean wave simulations. Rogue Wave 2000, 181 (2000)

    Google Scholar 

  41. Onorato, M., Osborne, A.R., Serio, M., Cavaleri, L., Brandini, C., Stansberg, C.T.: Observation of strongly non-gaussian statistics for random sea surface gravity waves in wave flume experiments. Phys. Rev. E 70, 067302 (2004)

    Article  ADS  Google Scholar 

  42. Onorato, M., Osborne, A., Serio, M., Cavaleri, L.: Modulational instability and non-gaussian statistics in experimental random water-wave trains. Phys. Fluids (1994-present) 17 (7), 078101 (2005)

    Google Scholar 

  43. Janssen, P.A.E.M.: Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33, 863 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  44. Annenkov, S.Y., Shrira, V.I.: Fast nonlinear evolution in wave turbulence. Phys. Rev. Lett. 102, 024502 (2009)

    Article  ADS  Google Scholar 

  45. Derevyanko, S., Small, E.: Nonlinear propagation of an optical speckle field. Phys. Rev. A 85 (5), 053816 (2012)

    Article  ADS  Google Scholar 

  46. Bromberg, Y., Lahini, U., Small, E., Silberberg, Y.: Hanbury Brown and Twiss interferometry with interacting photons. Nat. Photonics 4, 721–726 (2010)

    Article  ADS  Google Scholar 

  47. Osborne, A.R., Segre, E., Boffetta, G., Cavaleri, L.: Soliton basis states in shallow-water ocean surface waves. Phys. Rev. Lett. 67, 592–595 (1991)

    Article  ADS  Google Scholar 

  48. Osborne, A.R.: Behavior of solitons in random-function solutions of the periodic korteweg˘de vries equation. Phys. Rev. Lett. 71, 3115–3118 (1993)

    Article  ADS  Google Scholar 

  49. Osborne, A.R., Petti, M.: Laboratory generated, shallow water surface waves: Analysis using the periodic, inverse scattering transform. Phys. Fluids 6 (5), 1727–1744 (1994)

    Article  ADS  Google Scholar 

  50. Slunyaev, A.: Nonlinear analysis and simulations of measured freak wave time series. Eur. J. Mech. B. Fluids 25 (5), 621–635 (2006). Rogue waves European Geosciences Union Assembly

    Google Scholar 

  51. Costa, A., Osborne, A.R., Resio, D.T., Alessio, S., Chrivì, E., Saggese, E., Bellomo, K., Long, C.E.: Soliton turbulence in shallow water ocean surface waves. Phys. Rev. Lett. 113, 108501 (2014)

    Article  ADS  Google Scholar 

  52. Randoux, S., Suret, P., El, G.: Identification of rogue waves from scattering transform analysis of periodized waveforms (2015). arXiv:1512.04707

    Google Scholar 

  53. Randoux, S., Walczak, P., Onorato, M., Suret, P.: Nonlinear random optical waves: integrable turbulence, rogue waves and intermittency. Physica D (2016). http://dx.doi.org/10.1016/j.physd.2016.04.001

  54. Agrawal, G.P.: Nonlinear Fiber optics, 3rd edn. Optics and Photonics. Academic, New York (2001)

    MATH  Google Scholar 

  55. Bass, F., Kivshar, Y., Konotop, V.: Diffraction of nonlinear spatially incoherent wave. Sov. Phys. JETP 65, 245 (1987)

    Google Scholar 

  56. Derevyanko, S.A., Prilepsky, J.E.: Random input problem for the nonlinear Schrödinger equation. Phys. Rev. E 78, 046610 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  57. Islas, A.L., Schober, C.M.: Predicting rogue waves in random oceanic sea states. Phys. Fluids 17 (3), Paper No. 031701 (2005)

    Google Scholar 

  58. Onorato, M., Osborne, A.R., Serio, M., Bertone, S.: Freak waves in random oceanic sea states. Phys. Rev. Lett. 86, 5831–5834 (2001)

    Article  ADS  Google Scholar 

  59. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995). Cambridge Books Online

    Google Scholar 

  60. Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems, vol. 16. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  61. Akhmediev, N., Soto-Crespo, J., Ankiewicz, A.: Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373 (25), 2137–2145 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Efimov, A., Yulin, A.V., Skryabin, D.V., Knight, J.C., Joly, N., Omenetto, F.G., Taylor, A.J., Russell, P.: Interaction of an optical soliton with a dispersive wave. Phys. Rev. Lett. 95, 213902 (2005)

    Article  ADS  Google Scholar 

  63. Böhm, M., Mitschke, F.: Soliton-radiation beat analysis. Phys. Rev. E 73, 066615 (2006)

    Article  ADS  Google Scholar 

  64. El, G. A., Kamchatnov, A.M.: Kinetic equation for a dense soliton gas. Phys. Rev. Lett. 95, 204101 (2005)

    Article  ADS  Google Scholar 

  65. Soto-Crespo, J.M., Devine, N., Akhmediev, N.: Integrable turbulence and rogue waves: breathers or solitons? Phys. Rev. Lett. 116, 103901 (2016)

    Article  ADS  Google Scholar 

  66. El, G., Hoefer, M.: Dispersive shock waves and modulation theory (2016). arXiv preprint arXiv:1602.06163

    Google Scholar 

  67. Conforti, M., Trillo, S.: Dispersive wave emission from wave breaking. Opt. Lett. 38, 3815–3818 (2013)

    Article  ADS  Google Scholar 

  68. El, G.A., Grimshaw, R.H.J., Kamchatnov, A.M.: Wave breaking and the generation of undular bores in an integrable shallow water system. Stud. Appl. Math. 114 (4), 395–411 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  69. Kamchatnov, A., Kraenkel, R.A., Umarov, B.: Asymptotic soliton train solutions of the defocusing nonlinear Schrödinger equation. Phys. Rev. E 66 (3), 036609 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  70. Fratalocchi, A., Conti, C., Ruocco, G., Trillo, S.: Free-energy transition in a gas of noninteracting nonlinear wave particles. Phys. Rev. Lett. 101, 044101 (2008)

    Article  ADS  Google Scholar 

  71. Babin, S.A., Churkin, D.V., Ismagulov, A.E., Kablukov, S.I., Podivilov, E.V.: Four-wave-mixing-induced turbulent spectral broadening in a long raman fiber laser. J. Opt. Soc. Am. B 24, 1729 (2007)

    Article  ADS  Google Scholar 

  72. Turitsyn, S.K., Babin, S.A., El-Taher, A.E., Harper, P., Churkin, D.V., Kablukov, S.I., Ania-Castañón, J.D., Karalekas, V., Podivilov, E.V.: Random distributed feedback fibre laser. Nat. Photonics 4, 231 (2010)

    ADS  Google Scholar 

  73. Gorbunov, O.A., Sugavanam, S., Churkin, D.: Revealing statistical properties of quasi-cw fibre lasers in bandwidth-limited measurements. Opt. Express 22 (23), 28071–28076 (2014)

    Article  ADS  Google Scholar 

  74. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Article  ADS  Google Scholar 

  75. Walczak, P., Randoux, S., Suret, P.: Statistics of a turbulent raman fiber laser. Opt. Lett. 40 (13), 3101 (2015)

    Article  ADS  Google Scholar 

  76. Erkintalo, M., Genty, G., Dudley, J.M.: Rogue-wave-like characteristics in femtosecond supercontinuum generation. Opt. Lett. 34, 2468–2470 (2009)

    Article  ADS  Google Scholar 

  77. Randoux, S., Suret, P.: Experimental evidence of extreme value statistics in raman fiber lasers. Opt. Lett. 37, 500–502 (2012)

    Article  ADS  Google Scholar 

  78. Jalali, B., Solli, D., Goda, K., Tsia, K., Ropers, C.: Real-time measurements, rare events and photon economics. Eur. Phys. J. Special Topics 185 (1), 145–157 (2010)

    Article  ADS  Google Scholar 

  79. Wetzel, B., Stefani, A., Larger, L., Lacourt, P.-A., Merolla, J.-M., Sylvestre, T.: Kudlinski, A., Mussot, A., Genty, G., Dias, F., Dudley, J.: Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Sci. Rep. 2, Paper No. 882 (2012)

    Google Scholar 

  80. Goda, K., Jalali, B.: Dispersive fourier transformation for fast continuous single-shot measurements. Nat. Photonics 7 (2), 102–112 (2013)

    Article  ADS  Google Scholar 

  81. Suret, P., Koussaifi, R.E., Tikan, A., Evain, C., Randoux, S., Szwaj, C., Bielawski, S.: Direct observation of rogue waves in optical turbulence using time microscopy (2016). arXiv preprint arXiv:1603.01477

    Google Scholar 

  82. Bertola, M., Tovbis, A.: Universality for the focusing nonlinear schrödinger equation at the gradient catastrophe point: rational breathers and poles of the tritronquée solution to painlevé i. Commun. Pure Appl. Math. 66 (5), 678–752 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  83. Dudley, J.M., Genty, G., Dias, F., Kibler, B., Akhmediev, N.: Modulation instability, akhmediev breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497–21508 (2009)

    Article  ADS  Google Scholar 

  84. Akhmediev, A., Dudley, J.M., Solli, D.R., Turitsyn, S.K.: Recent progress in investigating optical rogue waves. J. Opt. 15 (6), 060201 (2013)

    Article  ADS  Google Scholar 

  85. Hammani, K., Kibler, B., Finot, C., Picozzi, A.: Emergence of rogue waves from optical turbulence. Phys. Lett. A 374 (34), 3585–3589 (2010)

    Article  ADS  MATH  Google Scholar 

  86. Kibler, B., Hammani, K., Michel, C., Finot, C., Picozzi, A.: Rogue waves, rational solitons and wave turbulence theory. Phys. Lett. A 375 (35), 3149–3155 (2011)

    Article  ADS  MATH  Google Scholar 

  87. Mori, M.O., Nobuhito, M., Janssen, P.A.E.M.: On the estimation of the kurtosis in directional sea states for freak wave forecasting. J. Phys. Oceanogr. 41, 1484 (2011)

    Article  ADS  Google Scholar 

  88. Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528 (2), 47–89 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  89. Sreenivasan, K.R.: On the fine-scale intermittency of turbulence. J. Fluid Mech. 151, 81–103 (1985)

    Article  ADS  MATH  Google Scholar 

  90. Alexandrova, O., Carbone, V., Veltri, P., Sorriso-Valvo, L.: Solar wind cluster observations: turbulent spectrum and role of hall effect. Planet. Space Sci. 55 (15), 2224–2227 (2007). Dynamical Processes in Space Plasmas Dynamical Processes in Space Plasmas

    Google Scholar 

  91. Bosch, E., van de Water, W.: Spatiotemporal intermittency in the faraday experiment. Phys. Rev. Lett. 70, 3420–3423 (1993)

    Article  ADS  Google Scholar 

  92. Osborne, A.: Nonlinear Ocean Waves. Academic, New York (2010)

    MATH  Google Scholar 

  93. Biondini, G., Kovačič, G.: Inverse scattering transform for the focusing nonlinear schrödinger equation with nonzero boundary conditions. J. Math. Phys. 55 (3), Paper No. 031506 (2014)

    Google Scholar 

  94. Kamchatnov, A., Gammal, A., Kraenkel, R.A.: Dissipationless shock waves in Bose-Einstein condensates with repulsive interaction between atoms. Phys. Rev. A 69 (6), 063605 (2004)

    Article  ADS  MATH  Google Scholar 

  95. Pelinovsky, E., Kharif, C., et al.: Extreme Ocean Waves. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  96. Kamvissis, S., McLaughlin, K.D.-R., Miller, P.D.: Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrodinger Equation (AM-154). vol. 154 (Princeton University Press, Princeton, NJ, 2003)

    Book  MATH  Google Scholar 

  97. El, G.A., Khamis, E.G., Tovbis, A.: Dam break problem for the focusing nonlinear schrödinger equation and the generation of rogue waves (2015). Arxiv Preprint arXiv:1505.01785

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Ministry of Higher Education and Research, Nord-Pas de Calais Regional Council and European Regional Development Fund (ERDF) through the Contrat de Projets Etat-Région (CPER) 2007–2013, as well as by the Agence Nationale de la Recherche through the LABEX CEMPI project (ANR-11-LABX-0007) and the OPTIROC project (ANR-12-BS04-0011 OPTIROC). The authors acknowledge to T. Grava (Trieste, Italy), G. El (Loughborough University) and M. Onorato (University of Torino) for fruitful discussions. The authors acknowledge P. Walczak for his major contribution to the work presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Randoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Randoux, S., Suret, P. (2016). Integrable Turbulence with Nonlinear Random Optical Waves. In: Onorato, M., Resitori, S., Baronio, F. (eds) Rogue and Shock Waves in Nonlinear Dispersive Media. Lecture Notes in Physics, vol 926. Springer, Cham. https://doi.org/10.1007/978-3-319-39214-1_9

Download citation

Publish with us

Policies and ethics