Skip to main content

Whitham Modulation Equations and Application to Small Dispersion Asymptotics and Long Time Asymptotics of Nonlinear Dispersive Equations

  • Chapter
  • First Online:
Rogue and Shock Waves in Nonlinear Dispersive Media

Part of the book series: Lecture Notes in Physics ((LNP,volume 926))

Abstract

In this chapter we review the theory of modulation equations or Whitham equations for the travelling wave solution of KdV. We then apply the Whitham modulation equations to describe the long-time asymptotics and small dispersion asymptotics of the KdV solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ablowitz, M.J., Baldwin, D.E.: Interactions and asymptotics of dispersive shock waves—Korteweg-de Vries equation. Phys. Lett. A 377 (7), 555–559 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ablowitz, M.J., Newell, A.C.: The decay of the continuous spectrum for solutions of the Korteweg-de Vries equation. J. Math. Phys. 14, 1277–1284 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ablowitz, M.J., Segur, H.: Asymptotic solutions of the Korteweg-de Vries equation. Stud. Appl. Math. 57, 13–44 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ablowitz, M.J., Baldwin, D.E., Hoefer, M.A.: Soliton generation and multiple phases in dispersive shock and rarefaction wave interaction. Phys. Rev. E (3) 80(1), 016603, 5 pp. (2009)

    Google Scholar 

  5. Bikbaev, R.F., Sharipov, R.A.: The asymptotic behavior, as t →  of the solution of the Cauchy problem for the Korteweg de Vries equation in a class of potentials with finite-gap behavior as → ±. Theoret. Math. Phys. 78 (3), 244–252 (1989)

    Google Scholar 

  6. Boutet de Monvel, A., Its, A., Shepelsky, D.: Painlevé-type asymptotics for the Camassa-Holm equation. SIAM J. Math. Anal. 42 (4), 1854–1873 (2010)

    Google Scholar 

  7. Buslaev, V.S., Sukhanov, V.V.: Asymptotic behavior of solutions of the Korteweg de Vries equation. J. Sov. Math. 34, 1905–1920 (1986) (in English)

    Article  MATH  Google Scholar 

  8. Claeys, T., Grava, T.: Solitonic asymptotics for the Korteweg-de Vries equation in the small dispersion limit. SIAM J. Math. Anal. 42 (5), 2132–2154 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Claeys, T., Grava, T.: Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann-Hilbert approach. Commun. Math. Phys. 286 (3), 979–1009 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Claeys, T., Grava, T.: Painlevé II asymptotics near the leading edge of the oscillatory zone for the Korteweg-de Vries equation in the small-dispersion limit. Commun. Pure Appl. Math. 63 (2), 203–232, (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Claeys, T., Grava, T.: The KdV hierarchy: universality and a Painlevé transcendent. Int. Math. Res. Not. IMRN 22, 5063–5099 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137 (2), 295–368 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deift, P., Zhou, X.: Perturbation theory for infinite-dimensional integrable systems on the line. A case study. Acta Math. 188 (2), 163–262 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Deift, P.A., Its, A.R., Zhou, X.: Long-time asymptotics for integrable nonlinear wave equations. In: Important Developments in Soliton Theory. Springer Series in Nonlinear Dynamics, pp. 181–204. Springer, Berlin (1993)

    Google Scholar 

  15. Deift, P., Venakides, S., Zhou, X.: The collisionless shock region for the long-time behavior of solutions of the KdV equation. Commun. Pure Appl. Math. 47 (2), 199–206 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deift, P., Venakides S., Zhou, X.: New result in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems. IMRN 6, 285–299 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Dobrohotov, M., Ju, S., Maslov, V.P.: Finite-zone almost periodic solutions in WKB-approximations. In: Current Problems in Mathematics, vol. 15, pp. 3–94, 228. Akad. Nauk SSSR, Moscow (1980)

    Google Scholar 

  18. Dubrovin, B., Novikov, S.P.: Hydrodynamic of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. Russ. Math. Surv. 44 (6) (1989), 35–124

    MathSciNet  MATH  Google Scholar 

  19. Dubrovin, B., Grava, T., Klein, C., Moro, A.: On critical behaviour in systems of Hamiltonian partial differential equations. J. Nonlinear Sci. 25 (3), 631–707 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Egorova, I., Gladka, Z., Kotlyarov, V., Teschl, G.: Long-time asymptotics for the Korteweg–de Vries equation with step-like initial data. Nonlinearity 26 (7) (2013), 1839–1864

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. El, G.A.: Resolution of a shock in hyperbolic systems modified by weak dispersion. Chaos 15 (3), 037103, 21 pp. (2005)

    Google Scholar 

  22. El, G.A., Grimshaw, R.H.J., Kamchatnov, A.M.: Analytic model for a weakly dissipative shallow-water undular bore. Chaos 15 (3) 037102, 13 pp. (2005)

    Google Scholar 

  23. Gardner, C.S., Green J.M., Kruskal, M.D., Miura, R.M.: Phys. Rev. Lett. 19, 1095 (1967)

    Article  ADS  Google Scholar 

  24. Flaschka, H., Forest, M., McLaughlin, D.H.: Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equations. Commun. Pure App. Math. 33, 739–784 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Grava, T., Klein, C.: Numerical solution of the small dispersion limit of Korteweg-de Vries and Whitham equations. Commun. Pure Appl. Math. 60 (11), 1623–1664 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grava, T., Klein, C.: A numerical study of the small dispersion limit of the Korteweg-de Vries equation and asymptotic solutions. Phys. D 241 (23–24), 2246–2264 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grava, T., Tian, F.-R.: The generation, propagation, and extinction of multiphases in the KdV zero-dispersion limit. Commun. Pure Appl. Math. 55 (12), 1569–1639 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gurevich, A.V., Pitaevskii, L.P.: Decay of initial discontinuity in the Korteweg de Vries equation. JETP Lett. 17, 193–195 (1973)

    ADS  Google Scholar 

  29. Gurevich, A.V., Pitaevskii, L.P.: Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 38, 291–297 (1974)

    ADS  Google Scholar 

  30. Gurevich, A.V., Krylov, A.L., El, G.A.: Evolution of a Riemann wave in dispersive hydrodynamics. Soviet Phys. JETP 74 (6), 957–962 (1992)

    MathSciNet  Google Scholar 

  31. Hastings, S.P., McLeod, J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Ration. Mech. Anal. 73, 31–51 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. Its, A.R.: Asymptotics of solutions of the nonlinear Schrödinger equation and isomonodromic deformations of systems of linear differential. Sov. Math. Dokl. 24, 452–456 (1981)

    MATH  Google Scholar 

  33. Its, A.R., Matveev, V.B.: Hill operators with a finite number of lacunae. Funct. Anal. Appl. 9 (1), 65–66 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kamchatnov, A.M.: Nonlinear Periodic Waves and Their Modulations. An Introductory Course, xiv+383 pp. World Scientific Publishing, River Edge, NJ (2000). ISBN:981-02-4407-X

    Google Scholar 

  35. Kamchatnov, A.M.: On Whitham theory for perturbed integrable equations. Physica D 188, 247–261 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Kamvissis, S., McLaughlin, K.D.T.-R., Miller, P.D.: Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation. Annals of Mathematics Studies, vol. 154, xii+265 pp. Princeton University Press, Princeton, NJ (2003). ISBN:0-691-11483-8; 0-691-11482-X

    Google Scholar 

  37. Khruslov, E.Y.: Decay of initial step-like perturbation of the KdV equation. JETP Lett. 21, 217–218 (1975)

    ADS  Google Scholar 

  38. Kotlyarov, V., Minakov, A.: Modulated elliptic wave and asymptotic solitons in a shock problem to the modified Kortweg–de Vries equation. J. Phys. A 48 (30), 305201, 35 pp. (2015)

    Google Scholar 

  39. Kruskal, M.D., Zabusky, N.J.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys Rev. Lett. 15, 240–243 (1965)

    ADS  MATH  Google Scholar 

  40. Lawden, D.F.: Elliptic Functions and Applications. Applied Mathematical Sciences, vol. 80. Springer, New York (1989)

    Google Scholar 

  41. Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg de Vries equation, I, II, III. Commun. Pure Appl. Math. 36, 253–290, 571–593, 809–830 (1983)

    Google Scholar 

  42. Levermore, C.D.: The hyperbolic nature of the zero dispersion KdV limit. Commun. Partial Differ. Equa. 13 (4), 495–514 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  43. Leach, J.A., Needham, D.J.: The large-time development of the solution to an initial-value problem for the Korteweg-de Vries equation: I. Initial data has a discontinuous expansive step. Nonlinearity 21, 2391–2408 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Novikov, S., Manakov, S.V., Pitaevski, L.P., Zakharov, V.E.: Theory of solitons. The inverse scattering method. Translated from the Russian. Contemporary Soviet Mathematics, xi+276 pp. Consultants Bureau [Plenum], New York (1984). ISBN: 0-306-10977-8

    Google Scholar 

  45. Sagdeev, R.Z.: Collective processes and shock waves in rarefied plasma. In: Leontovich, M.A. (ed.) Problems in Plasma Theory, vol. 5. Atomizdat, Moscow (1964, in Russian)

    Google Scholar 

  46. Schuur, P.C.: Asymptotic Analysis of Soliton Problems. An Inverse Scattering Approach. Lecture Notes in Mathematics, vol. 1232, viii+180 pp. Springer, Berlin (1986). ISBN:3-540-17203-3

    Google Scholar 

  47. Segur, H., Ablowitz, M.J.: Asymptotic solutions of nonlinear evolutions equations and Painlevé transcendents. Physica D 3 (1), 165–184 (1981).

    Article  ADS  MATH  Google Scholar 

  48. Tanaka, S.: Korteweg–de Vries equation; asymptotic behavior of solutions. Publ. Res. Inst. Math. Sci. 10, 367–379 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tian, F.-R.: Oscillations of the zero dispersion limit of the Korteweg de Vries equations. Commun. Pure App. Math. 46, 1093–1129 (1993)

    Article  MATH  Google Scholar 

  50. Tian, F.-R.: The Whitham-type equations and linear overdetermined systems of Euler-Poisson-Darboux type. Duke Math. J. 74 (1), 203–221 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tian, F.-R.: The initial value problem for the Whitham averaged system. Commun. Math. Phys. 166 (1), 79–115 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Trillo, S., Klein, M., Clauss, G., Onorato, M.: Observation of dispersive shock waves developing from initial depressions in shallow water. Physica D (2016). http://dx.doi.org/10.1016/j.physd.2016.01.007

  53. Tsarev, S.P.: Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type. Soviet Math. Dokl. 31, 488–491 (1985)

    MathSciNet  MATH  Google Scholar 

  54. Venakides, S.: Long time asymptotics of the Korteweg–de Vries equation Trans. Am. Math. Soc. 293, 411–419 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  55. Venakides, V., The zero dispersion limit of the Korteweg de Vries equation for initial potential with nontrivial reflection coefficient. Commun. Pure Appl. Math. 38, 125–155 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  56. Venakides, S., The Korteweg de Vries equations with small dispersion: higher order Lax-Levermore theory. Commun. Pure Appl. Math. 43, 335–361 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  57. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  58. Zakharov, V.E., Manakov, S.V.: Asymptotic behavior of non-linear wave systems integrated by the inverse scattering method. Soviet Phys. JETP 44 (1), 106–112 (1976)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Tamara Grava acknowledges the support by the Leverhulme Trust Research Fellowship RF-2015-442 from UK and PRIN Grant “Geometric and analytic theory of Hamiltonian systems in finite and infinite dimensions” of Italian Ministry of Universities and Researches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Grava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grava, T. (2016). Whitham Modulation Equations and Application to Small Dispersion Asymptotics and Long Time Asymptotics of Nonlinear Dispersive Equations. In: Onorato, M., Resitori, S., Baronio, F. (eds) Rogue and Shock Waves in Nonlinear Dispersive Media. Lecture Notes in Physics, vol 926. Springer, Cham. https://doi.org/10.1007/978-3-319-39214-1_10

Download citation

Publish with us

Policies and ethics