Skip to main content

Assembly, Engineering and Applications of Virus-Based Protein Nanoparticles

  • Chapter
  • First Online:
Protein-based Engineered Nanostructures

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 940))

Abstract

Viruses and their protein capsids can be regarded as biologically evolved nanomachines able to perform multiple, complex biological functions through coordinated mechano-chemical actions during the infectious cycle. The advent of nanoscience and nanotechnology has opened up, in the last 10 years or so, a vast number of novel possibilities to exploit engineered viral capsids as protein-based nanoparticles for multiple biomedical, biotechnological or nanotechnological applications. This chapter attempts to provide a broad, updated overview on the self-assembly and engineering of virus capsids, and on applications of virus-based nanoparticles. Different sections provide outlines on: (i) the structure, functions and properties of virus capsids; (ii) general approaches for obtaining assembled virus particles; (iii) basic principles and events related to virus capsid self-assembly; (iv) genetic and chemical strategies for engineering virus particles; (v) some applications of engineered virus particles being developed; and (vi) some examples on the engineering of virus particles to modify their physical properties, in order to improve their suitability for different uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAV:

adeno-associated viruses

AFM:

atomic force microscopy

BMV:

brome mosaic virus

CA:

capsid protein of HIV

CBB:

capsid building block

CCMV:

cowpea chlorotic mottle virus

CNT:

classic nucleation theory

CP:

capsid protein

CPMV:

cowpea mosaic virus

CMV:

cucumber mosaic virus

CPV:

canine parvovirus

cryo-EM:

cryo-electron microscopy

ds:

double-stranded

EMDB:

Electron Microscopy Database

FMDV:

foot-and-mouth disease virus

FRET:

Förster resonance energy transfer

HBV:

hepatitis B virus

HCRSV:

Hibiscus chlorotic ringspot virus

HIV:

human immunodeficiency virus

HPV:

human papillomavirus

HRV:

human rhinovirus

HSV-1:

herpes simplex virus type 1

MD:

molecular dynamics

MRI:

magnetic resonance imaging

MS:

mass spectrometry

MVM:

minute virus of mice

NP:

nanoparticle

PCR:

polymerase chain reaction

PDB:

Protein Data Bank

PEG:

polyethyleneglycol

RCNMV:

red clover nechrotic mottle virus

SBMV:

southern bean mosaic virus

ss:

single-stranded

STNV:

satellite tobacco necrosis virus

SV40:

simian virus 40

TBSV:

tomato bushy stunt virus

TMV:

tobacco mosaic virus

VLP:

virus-like particle

VP:

viral (capsid) protein.

References

  1. Agbandje-McKenna M, McKenna R (eds) (2011) Structural virology. RSC Publishing, Cambridge

    Google Scholar 

  2. Mateu MG (ed) (2013) Structure and physics of viruses. Springer, Dordrecht

    Google Scholar 

  3. Harrison SC (2007) Principles of virus structure. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Strauss SE (eds) Fields virology, vol 1. Lippincott Williams & Wilkins, Philadelphia, pp 59–98

    Google Scholar 

  4. Johnson JE, Speir JA (2008) Principles of virus structure. In: Mahy BWJ, van Regenmortel MHV (eds) Encyclopedia of virology, vol 5. Elsevier, Oxford, pp 393–401

    Chapter  Google Scholar 

  5. Prasad BV, Schmid MF (2012) Principles of virus structural organization. Exp Med Virol 726:17–47

    CAS  Google Scholar 

  6. Acheson NH (2007) Fundamentals of molecular virology, 2nd edn. Wiley, Hoboken

    Google Scholar 

  7. Flint SJ, Enquist LW, Racaniello VR, Skalka AM (2009) Principles of virology, 3rd edn. ASM Press, Washington, DC

    Google Scholar 

  8. Cann AJ (2012) Principles of molecular virology, 5th edn. Academic, Waltham

    Google Scholar 

  9. Caston JR (2013) The basic architectures of viruses. In: Mateu MG (ed) Structure and physics of viruses. Springer, Dordrecht, pp 53–75

    Chapter  Google Scholar 

  10. Chapman MS, Liljas L (2003) Structural folds of viral proteins. Adv Prot Chem 64:125–196

    Article  CAS  Google Scholar 

  11. Caspar DLD, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symp Quant Biol 27:1–24

    Article  CAS  PubMed  Google Scholar 

  12. Johnson JE (1996) Functional implications of protein-protein interactions in icosahedral viruses. Proc Natl Acad Sci U S A 93:27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prevelige PE Jr (1998) Inhibiting virus-capsid assembly by altering the polymerisation pathway. Trends Biotechnol 16:61–65

    Google Scholar 

  14. San Martin C (2013) Structure and assembly of complex viruses. In: Mateu MG (ed) Structure and physics of viruses. Springer, Dordrecht, pp 329–360

    Chapter  Google Scholar 

  15. Sundquist WI, Kräusslich H-G (2012) HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2:a006924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Rossmann MG, Rao VB (eds) (2012) Viral molecular machines, vol 726, Advances in experimental medicine and biology. Springer, New York

    Google Scholar 

  17. Risco C, Fernández de Castro I (2013) Virus morphogenesis in the cell: methods and observations. In: Mateu MG (ed) Structure and physics of viruses. Springer, Dordrecht, pp 417–440

    Chapter  Google Scholar 

  18. Mateu MG (2013) Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 531:65–79

    Article  CAS  PubMed  Google Scholar 

  19. Alonso JM, Górzny ML, Bittner AM (2013) The physics of tobacco mosaic virus and virus-based devices in biotechnology. Trends Biotechnol 31:530–538

    Article  CAS  PubMed  Google Scholar 

  20. Witz J, Brown F (2001) Structural dynamics, an intrinsic property of viral capsids. Arch Virol 146:2263–2274

    Article  CAS  PubMed  Google Scholar 

  21. Johnson JE (2003) Virus particle dynamics. Adv Protein Chem 64:197–218

    Article  CAS  PubMed  Google Scholar 

  22. Bothner B, Hilmer JK (2011) Probing viral capsids in solution. In: Agbandje-McKenna M, McKenna R (eds) Structural virology. RSC Publishing, Cambridge, pp 41–61

    Google Scholar 

  23. Katen S, Zlotnick A (2009) The thermodynamics of virus capsid assembly. Methods Enzymol 455:395–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zlotnick A, Fane BA (2011) Mechanisms of icosahedral virus assembly. In: Agbandje-McKenna M, McKenna R (eds) Structural virology. RSC Publishing, Cambridge, pp 180–202

    Google Scholar 

  25. Almendral JM (2013) Assembly of simple icosahedral viruses. In: Mateu MG (ed) Structure and physics of viruses. Springer, Dordrecht, pp 307–328

    Chapter  Google Scholar 

  26. Luque A, Reguera D (2013) Theoretical studies on assembly, physical stability and dynamics of viruses. In: Mateu MG (ed) Structure and physics of viruses. Springer, Dordrecht, pp 553–595

    Chapter  Google Scholar 

  27. Perlmutter JD, Hagan MF (2014) Mechanisms of virus assembly. Annu Rev Phys Chem 66:217–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Pattenden LK, Middelberg APJ, Niebert M, Lipin DI (2005) Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol 23:523–529

    Article  CAS  PubMed  Google Scholar 

  29. Gurda BL, Agbandje-McKenna M (2011) Production and purification of viruses for structural studies. In: Agbandje-McKenna M, McKenna R (eds) Structural virology. RSC Publishing, Cambridge, pp 3–21

    Google Scholar 

  30. Lua LHL, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middleberg APJ (2013) Bioengineering virus-like particles as vaccines. Biotechnol Bioeng 111:425–440

    Article  PubMed  CAS  Google Scholar 

  31. Glasgow J, Tullman-Ercek D (2014) Production and applications of engineered viral capsids. Appl Microbiol Biotechnol 98:5847–5858

    Article  CAS  PubMed  Google Scholar 

  32. Evans DJ (1999) Reverse genetics of picornaviruses. Adv Virus Res 53:209–228

    Article  CAS  PubMed  Google Scholar 

  33. Nagyova A, Subr Z (2007) Infectious full-length clones of plant viruses and their use for construction of viral vectors. Acta Virol 51:223–237

    CAS  PubMed  Google Scholar 

  34. Yildiz I, Shukia S, Steinmetz NF (2011) Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 22:901–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saunders K, Lomonosoff GP (2013) Exploiting plant virus-derived components to achieve in planta expression and for templates for synthetic biology applications. New Phytol 200:16–26

    Article  CAS  PubMed  Google Scholar 

  36. Palomares LA, Ramirez OT (2009) Challenges for the production of virus-like particles in insect cells: the case of rotavirus-like particles. Biochem Eng 45:158–167

    Article  CAS  Google Scholar 

  37. Bundy BC, Franciszkowitz MJ, Swartz JR (2008) Escherichia coli-based cell-free synthesis of virus-like particles. Biotechnol Bioeng 100:28–37

    Article  CAS  PubMed  Google Scholar 

  38. Liu Z, Qiao J, Niu Z, Wang Q (2012) Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles. Chem Soc Rev 41:6178–6194

    Article  CAS  PubMed  Google Scholar 

  39. De la Escosura A, Nolte R, Cornelissen J (2009) Viruses and protein cages as nanoconainers and nanoreactors. J Mater Chem 19:2274–2278

    Article  CAS  Google Scholar 

  40. Bronstein LM (2011) Virus-based nanoparticles with inorganic cargo: what does the future hold? Small 12:1069–1618

    Google Scholar 

  41. Li F, Wang Q (2014) Fabrication of nanoarchitectures templated by virus-based nanoparticles: strategies and applications. Small 2:230–245

    Article  CAS  Google Scholar 

  42. Klug A (1999) The tobacco mosaic virus particle: structure and assembly. Philos Trans R Soc Lond B Biol Sci 354:531–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tuma R, Tsuruta H, French KH, Prevelige PE (2008) Detection of intermediates and kinetic control during assembly of bacteriophage P22 procapsid. J Mol Biol 381:1395–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Teschke CN, Parent KN (2010) Let the phage do the work: using the phage P22 coat protein structures as a framework to understand its folding and assembly mutants. Virology 401:119–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19:1025–1042

    Article  CAS  Google Scholar 

  46. Casjens S (1997) Principles of virion structure, function and assembly. In: Chiu W, Burnett RM, Garcea RL (eds) Structural biology of viruses. Oxford University Press, New York, pp 3–37

    Google Scholar 

  47. Dokland T (1999) Scaffolding proteins and their role in viral assembly. Cell Mol Life Sci 56:580–603

    Article  CAS  PubMed  Google Scholar 

  48. Fane BA, Prevelige PE Jr (2003) Mechanism of scaffolding-assisted viral assembly. Adv Protein Chem 64:259–299

    Google Scholar 

  49. Prevelige PE Jr, Fane BA (2012) Building the machines: scaffolding protein functions during bacteriophage morphogenesis. Adv Exp Med Virol 726:325–350

    Google Scholar 

  50. Johnson JE, Rueckert RR (1997) Packaging and release of the viral genome. In: Chiu W, Burnett RM, Garcea RL (eds) Structural biology of viruses. Oxford University Press, New York, pp 269–287

    Google Scholar 

  51. Larson SB, McPherson A (2001) Satellite mosaic virus RNA: structure and implications for assembly. Curr Opin Struct Biol 11:59–65

    Article  CAS  PubMed  Google Scholar 

  52. Culver JN (2002) Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance. Annu Rev Phytopathol 40:287–308

    Article  CAS  PubMed  Google Scholar 

  53. Schneemann A (2006) The structural and functional role of RNA in icosahedral virus assembly. Annu Rev Microbiol 60:51–67

    Article  CAS  PubMed  Google Scholar 

  54. Rao AL (2006) Genome packaging by spherical plant RNA viruses. Annu Rev Phytopathol 44:61–87

    Article  CAS  PubMed  Google Scholar 

  55. Cuervo A, Daudén MI, Carrascosa JL (2013) Nucleic acid packaging in viruses. In: Mateu MG (ed) Structure and physics of viruses. Springer, Dordrecht, pp 361–394

    Chapter  Google Scholar 

  56. Rapaport DC (2014) Molecular dynamics simulation: a tool for exploration and discovery using simple models. J Phys Condens Matter 26:503104

    Article  CAS  PubMed  Google Scholar 

  57. Rapaport DC (2010) Studies of reversible capsid shell growth. Phys Biol 7:045001

    Article  CAS  PubMed  Google Scholar 

  58. Hida K, Hanes J, Ostermeier M (2007) Directed evolution for drug and nucleic acid delivery. Adv Drug Deliv Rev 59:1562–1578

    Article  CAS  PubMed  Google Scholar 

  59. Fischlechner M, Donath E (2007) Viruses as building blocks for materials and devices. Angew Chem Int Ed 46:3184–3193

    Article  CAS  Google Scholar 

  60. Kehoe JW, Kay BK (2005) Filamentous phage display in the new millennium. Chem Rev 105:4056–4072

    Article  CAS  PubMed  Google Scholar 

  61. Domingo E, Biebricher C, Eigen M, Holland J (2001) Quasispecies and RNA virus evolution: principles and consequences. Landes Bioscience, Austin

    Google Scholar 

  62. Arora PS, Kirshenbaum K (2004) Nano-tailoring: stitching alterations on viral coats. Chem Biol 11:418–420

    Article  CAS  PubMed  Google Scholar 

  63. Strable E, Finn MG (2009) Chemical modification of viruses and virus-like particles. In: Manchester M, Steinmetz NF (eds) Viruses and nanotechnology. Curr Top Microbiol Immunol 327:1–21

    Google Scholar 

  64. Pokorski JK, Steinmetz NF (2011) The art of engineering viral nanoparticles. Mol Pharm 8:29–43

    Article  CAS  PubMed  Google Scholar 

  65. Smith MT, Hawes AK, Bundy BC (2013) Reengineering viruses and virus-like particles through chemical functionalization strategies. Curr Opin Struct Biol 24:620–626

    CAS  Google Scholar 

  66. Garcea RL, Gissmann L (2004) Virus-like particles as vaccines and vessels for the delivery of small molecules. Curr Opin Biotechnol 15:513–517

    Article  CAS  PubMed  Google Scholar 

  67. Douglas T, Young M (2006) Viruses: making friends with old foes. Science 312:873–875

    Article  CAS  PubMed  Google Scholar 

  68. Steinmetz NF, Evans D (2007) Utilisation of plant viruses in bionanotechnology. Org Biomol Chem 5:2891–2902

    Article  CAS  PubMed  Google Scholar 

  69. Young M, Willits D, Uchida M, Douglas T (2008) Plant viruses as biotemplates for materials and their use in nanotechnology. Annu Rev Phytopathol 46:361–384

    Article  CAS  PubMed  Google Scholar 

  70. Steinmetz NF, Lin T, Lomonosoff GP, Johnson JE (2009) Structure-based engineering of an icosahedral virus for nanomedicine and nanotechnology. In: Manchester M, Steinmetz NF (eds) Viruses and nanotechnology. Curr Top Microbiol Immunol 327:23–58

    Google Scholar 

  71. Flenniken ML, Uchida M, Liepold LO, Kang S, Young MJ, Douglas T (2009) A library of cage architectures as nanomaterials. In: Manchester M, Steinmetz NF (eds) Viruses and nanotechnology. Curr Top Microbiol Immunol 327:71–93

    Google Scholar 

  72. Mateu MG (2011) Virus engineering: functionalization and stabilization. Protein Eng Des Sel 24:53–63

    Article  CAS  PubMed  Google Scholar 

  73. Dedeo MT, Finley DT, Francis MB (2011) Viral capsids as self-assembling templates for new materials. Prog Mol Biol Transl Sci 103:353–392

    Article  CAS  PubMed  Google Scholar 

  74. Lee S-Y, Lim J-S, Harris MT (2012) Synthesis and applications of virus-based hybrid nanomaterials. Biotechnol Bioeng 109:16–30

    Article  CAS  PubMed  Google Scholar 

  75. Bittner AM, Alonso JM, Górzny ML, Wege C (2013) Nanoscale science and technology with plant viruses and bacteriophages. In: Mateu MG (ed) Structure and physics of viruses. Springer, Dordrecht, pp 667–702

    Chapter  Google Scholar 

  76. van Kan-Davelaar HE, van Hest JCM, Cornelissen JJLM, Koay MST (2014) Using viruses as nanomedicines. Br J Pharmacol 171:4001–4009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Paschke M (2006) Phage display systems and their applications. Appl Microbiol Biotechnol 70:2–11

    Article  CAS  PubMed  Google Scholar 

  78. Carnazza S, Guglielmino S (2010) Phage display as a tool for synthetic biology, Nanotechnology science and technology series. Nova Science Publications, New York

    Google Scholar 

  79. Cardinale D, Carette N, Michon T (2012) Virus scaffolds as enzyme nano-carriers. Trends Biotechnol 30:369–376

    Article  CAS  PubMed  Google Scholar 

  80. Roy P, Noad R (2008) Virus-like particles as a vaccine delivery system. Hum Vaccin 4:5–8

    Article  CAS  PubMed  Google Scholar 

  81. Jennings GT, Bachmann MF (2008) The coming of age of virus-like particle vaccines. Biol Chem 389:521–536

    Article  CAS  PubMed  Google Scholar 

  82. Roldao A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM (2010) Virus-like particles as particulate vaccines. Expert Rev Vaccines 9:1149–1176

    Article  CAS  PubMed  Google Scholar 

  83. Plummer EM, Manchester M (2011) Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:174–196

    Article  CAS  PubMed  Google Scholar 

  84. Barcena J, Blanco E (2013) Design of novel vaccines based on virus-like particles or chimeric virions. In: Mateu MG (ed) Structure and physics of viruses. Springer, Dordrecht, pp 631–665

    Chapter  Google Scholar 

  85. Wang D, Gao G (2014) State-of-the-art human gene therapy. Part I. Gene delivery technologies. Discov Med 18:67–77

    PubMed  PubMed Central  Google Scholar 

  86. Wang D, Gao G (2014) State-of-the-art human gene therapy. Part II. Gene therapy strategies and clinical applications. Discov Med 18:151–161

    PubMed  PubMed Central  Google Scholar 

  87. Waehler R, Russell SJ, Curiel DT (2007) Engineered targeted viral vectors for gene therapy. Nat Rev 8:573–587

    Article  CAS  Google Scholar 

  88. Wang J, Faust SM, Rabinowitz JE (2011) The next step in gene delivery: molecular engineering of adeno-associated virus serotypes. J Mol Cell Cardiol 50:793–802

    Article  CAS  PubMed  Google Scholar 

  89. Bartel MA, Weinstein JR, Schaffer DV (2012) Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. Gene Ther 19:694–700

    Article  CAS  PubMed  Google Scholar 

  90. Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene therapy. Nat Rev 15:445–451

    Article  CAS  Google Scholar 

  91. Russell SJ, Peng K-W (2007) Viruses as anticancer drugs. Trends Pharmacol Sci 28:326–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Alemany R (2012) Design of improved oncolytic adenoviruses. Adv Cancer Res 115:93–114

    Article  CAS  PubMed  Google Scholar 

  93. Miest TS, Cattaneo R (2014) New viruses for cancer therapy: meeting clinical needs. Nat Rev 12:23–34

    CAS  Google Scholar 

  94. Moradpour Z, Ghasemian A (2011) Modified phages: novel antimicrobial agents to combat infectious diseases. Biotechnol Adv 29:732–738

    Article  CAS  PubMed  Google Scholar 

  95. Farr R, Choi DS, Lee S-W (2014) Phage-based nanomaterials for biomedical applications. Acta Biomater 10:1741–1750

    Article  CAS  PubMed  Google Scholar 

  96. Manchester M, Singh P (2006) Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv Drug Deliv Rev 58:1505–1522

    Article  CAS  PubMed  Google Scholar 

  97. Singh R, Kostarelos K (2009) Designer adenoviruses for nanomedicine and nanodiagnostics. Trends Biotechnol 27:220–229

    Article  CAS  PubMed  Google Scholar 

  98. Ma Y, Nolte RJM, Cornelissen JJLM (2012) Virus-based nanocarriers for drug delivery. Adv Drug Deliv Rev 64:811–825

    Article  CAS  PubMed  Google Scholar 

  99. Wen AM, Rambhia PH, French RH, Steinmetz NF (2013) Design rules for nanomedical engineering: from physical virology to the applications of virus-based materials in medicine. J Biol Phys 39:301–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Soto CM, Ratna BR (2010) Virus hybrids as nanomaterials for biotechnology. Curr Opin Biotechnol 21:426–438

    Article  CAS  PubMed  Google Scholar 

  101. Lee JW, Song J, Hwang MP, Lee KH (2013) Nanoscale bacteriophage biosensors beyond phage display. Int J Nanomed 8:3917–3925

    Article  CAS  Google Scholar 

  102. Park JS, Cho MK, Lee EJ, Ahn KY, Jung JH, Cho Y, Han SS, Kim YK, Lee J (2009) A highly sensitive and selective diagnostic assay based on virus nanoparticles. Nat Nanotech 4:259–264

    Article  CAS  Google Scholar 

  103. Stephanopoulos N, Carrico ZM, Francis MB (2009) Nanoscale integration of sensitizing chromophores and porphyrins with bacteriophage MS2. Angew Chem Int Ed 48:9498–9502

    Article  CAS  Google Scholar 

  104. Everts M, Saini V, Leddon JL, Kok RJ, Stoff-Khalili M, Preuss MA, Millican CL, Perkins G, Brown JM, Bagaria H, Nikles DE, Johnson DT, Zharov VP, Curiel DT (2006) Covalently linked Au nanoparticles to a viral vector: potential for combined phototermal and gene cancer therapy. Nano Lett 6:587–591

    Article  CAS  PubMed  Google Scholar 

  105. Merzlyak A, Indrakanti S, Lee SW (2009) Genetically engineered nanofiber-like viruses for tissue regenerating materials. Nano Lett 9:846–852

    Article  CAS  PubMed  Google Scholar 

  106. Culver JM, Dawson WO, Plonk K, Stubbs G (1995) Site-directed mutagenesis confirms the involvement of carboxylate groups in the disassembly of tobacco mosaic virus. Virology 206:724–730

    Article  CAS  PubMed  Google Scholar 

  107. Ellard FM, Drew J, Blakemore WE, Stuart DI, King AMQ (1999) Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. J Gen Virol 80:1911–1918

    Article  CAS  PubMed  Google Scholar 

  108. Martín-Acebes MA, Vázquez-Calvo A, Rincón V, Mateu MG, Sobrino F (2011) A single amino acid substitution in the capsid of foot-and-mouth disease virus can increase acid resistance. J Virol 85:2733–2740

    Article  PubMed  CAS  Google Scholar 

  109. Ashcroft AE, Lago H, Macedo JM, Horn WT, Stonehouse NJ, Stockley PG (2005) Engineering thermal stability in RNA phage capsids via disulphide bonds. J Nanosci Nanotechnol 5:2034–2041

    Article  CAS  PubMed  Google Scholar 

  110. Porta C, Kotecha A, Burman A, Jackson T, Ren J, Loureiro S, Jones IM, Fry EE, Stuart DI, Charleston B (2013) Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen. PLoS Pathog 9:e1003255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mateo R, Luna E, Rincón V, Mateu MG (2008) Engineering viable foot-and-mouth disease viruses with increased thermostability as a step in the development of improved vaccines. J Virol 82:12232–12240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rincón V, Rodríguez-Huete A, López-Argüello S, Ibarra-Molero B, Sanchez-Ruiz JM, Harmsen MM, Mateu MG (2014) Identification of the structural basis of thermal lability of a virus provide a rationale for improved vaccines. Structure 22:1560–1570

    Article  PubMed  CAS  Google Scholar 

  113. Ivanovska IL et al (2004) Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc Natl Acad Sci U S A 101:7600–7605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Roos WH, Wuite GJL (2009) Nanoindentation studies reveal material properties of viruses. Adv Mater 21:1187–1192

    Article  CAS  Google Scholar 

  115. Roos WH, Bruinsma R, Wuite GJL (2010) Physical virology. Nat Phys 6:733–743

    Article  CAS  Google Scholar 

  116. Mateu MG (2012) Mechanical properties of viruses analyzed by atomic force microscopy: a virological perspective. Virus Res 168:1–22

    Article  CAS  PubMed  Google Scholar 

  117. De Pablo PJ, Mateu MG (2013) Mechanical properties of viruses. In: Mateu MG (ed) Structure and physics of viruses. Springer, Dordrecht, pp 519–551

    Chapter  Google Scholar 

  118. Michel JP, Ivanovska IL, Gibbons MM, Klug WS, Knobler CM, Wuite GJL, Schmidt CF (2006) Nanoindentation studies of full and empty viral capsids and the effects of protein mutations on elasticity and strength. Proc Natl Acad Sci U S A 103:6184–6189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Carrasco C, Castellanos M, de Pablo PJ, Mateu MG (2008) Manipulation of the mechanical properties of a virus by protein engineering. Proc Natl Acad Sci U S A 105:4150–4155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Castellanos M, de Pablo PJ, Mateu MG (2012) Mechanical elasticity as a physical signature of conformational dynamics in a virus particle. Proc Natl Acad Sci U S A 109:12028–12033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Castellanos M, Carrillo PJP, Mateu MG (2015) Quantitatively probing propensity for structural transitions in engineered virus nanoparticles by single-molecule mechanical analysis. Nanoscale 7:5654–5664

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I gratefully acknowledge former and current collaborators and members of my group for their invaluable contributions to our studies on structure-properties-function relationships and engineering of virus particles, and Miguel Angel Fuertes for help with figures in this chapter. This work was funded by grants from MINECO/FEDER EU (BIO2012-37649 and BIO2015-69928-R) and by an institutional grant from Fundacion Ramon Areces. The author is an associate member of the Institute for Biocomputation and Physics of Complex Systems, Zaragoza, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio G. Mateu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mateu, M.G. (2016). Assembly, Engineering and Applications of Virus-Based Protein Nanoparticles. In: Cortajarena, A., Grove, T. (eds) Protein-based Engineered Nanostructures. Advances in Experimental Medicine and Biology, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-319-39196-0_5

Download citation

Publish with us

Policies and ethics