Skip to main content

Two-Dimensional Peptide and Protein Assemblies

  • Chapter
  • First Online:
Protein-based Engineered Nanostructures

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 940))

Abstract

Two-dimensional nanoscale assemblies (nanosheets) represent a promising structural platform to arrange molecular and supramolecular substrates with precision for integration into devices. This nanoarchitectonic approach has gained significant traction over the last decade, as a general concept to guide the fabrication of functional nanoscale devices. Sequence-specific biomolecules, e.g., peptides and proteins, may be considered excellent substrates for the fabrication of two-dimensional nanoarchitectonics. Molecular level instructions can be encoded within the sequence of monomers, which allows for control over supramolecular structure if suitable design principles could be elaborated. Due to the complexity of interactions between protomers, the development of principles aimed toward rational design of peptide and protein nanosheets is at a nascent stage. This review discusses the known two-dimensional peptide and protein assemblies to further our understanding of how to control the arrangement of molecules in two-dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egelman EH, Francis N, DeRosier DJ (1982) F-actin is a helix with a random variable twist. Nature 298(5870):131–135

    Article  CAS  PubMed  Google Scholar 

  2. Galkin VE, Orlova A, Vos MR, Schroder GF, Egelman EH (2015) Near-atomic resolution for one state of F-actin. Structure 23(1):173–182. doi:10.1016/j.str.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  3. Prockop DJ, Fertala A (1998) The collagen fibril: the almost crystalline structure. J Struct Biol 122(1–2):111–118. doi:10.1006/jsbi.1998.3976

    Article  CAS  PubMed  Google Scholar 

  4. Anzini P, Xu C, Hughes S, Magnotti E, Jiang T, Hemmingsen L, Demeler B, Conticello VP (2013) Controlling self-assembly of a peptide-based material via metal-ion induced registry shift. J Am Chem Soc 135(28):10278–10281. doi:10.1021/ja404677c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dong H, Paramonov SE, Hartgerink JD (2008) Self-assembly of alpha-helical coiled coil nanofibers. J Am Chem Soc 130(41):13691–13695. doi:10.1021/ja8037323

    Article  CAS  PubMed  Google Scholar 

  6. Dublin SN, Conticello VP (2008) Design of a selective metal ion switch for self-assembly of peptide-based fibrils. J Am Chem Soc 130(1):49–51. doi:10.1021/ja0775016

    Article  CAS  PubMed  Google Scholar 

  7. Kojima S, Kuriki Y, Yoshida T, Yazaki K, K-i M (1997) Fibril formation by an Amphipathic.ALPHA.-Helix-Forming polypeptide produced by gene engineering. Proc Jpn Acad 73(1):7–11. doi:10.2183/pjab.73.7

    Article  Google Scholar 

  8. Ogihara NL, Ghirlanda G, Bryson JW, Gingery M, DeGrado WF, Eisenberg D (2001) Design of three-dimensional domain-swapped dimers and fibrous oligomers. Proc Natl Acad Sci U S A 98(4):1404–1409. doi:10.1073/pnas.98.4.1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pandya MJ, Spooner GM, Sunde M, Thorpe JR, Rodger A, Woolfson DN (2000) Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis. Biochemistry 39(30):8728–8734

    Article  CAS  PubMed  Google Scholar 

  10. Papapostolou D, Smith AM, Atkins ED, Oliver SJ, Ryadnov MG, Serpell LC, Woolfson DN (2007) Engineering nanoscale order into a designed protein fiber. Proc Natl Acad Sci U S A 104(26):10853–10858. doi:10.1073/pnas.0700801104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Potekhin SA, Melnik TN, Popov V, Lanina NF, Vazina AA, Rigler P, Verdini AS, Corradin G, Kajava AV (2001) De novo design of fibrils made of short alpha-helical coiled coil peptides. Chem Biol 8(11):1025–1032

    Article  CAS  PubMed  Google Scholar 

  12. Ryadnov MG, Woolfson DN (2003) Introducing branches into a self-assembling peptide fiber. Angew Chem Int Ed Engl 42(26):3021–3023. doi:10.1002/anie.200351418

    Article  CAS  PubMed  Google Scholar 

  13. Ryadnov MG, Woolfson DN (2003) Engineering the morphology of a self-assembling protein fibre. Nat Mater 2(5):329–332. doi:10.1038/nmat885

    Article  CAS  PubMed  Google Scholar 

  14. Wagner DE, Phillips CL, Ali WM, Nybakken GE, Crawford ED, Schwab AD, Smith WF, Fairman R (2005) Toward the development of peptide nanofilaments and nanoropes as smart materials. Proc Natl Acad Sci U S A 102(36):12656–12661. doi:10.1073/pnas.0505871102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zimenkov Y, Conticello VP, Guo L, Thiyagarajan P (2004) Rational design of a nanoscale helical scaffold derived from self-assembly of a dimeric coiled coil motif. Tetrahedron 60(34):7237–7246. doi:http://dx.doi.org/10.1016/j.tet.2004.06.068

  16. Zimenkov Y, Dublin SN, Ni R, Tu RS, Breedveld V, Apkarian RP, Conticello VP (2006) Rational design of a reversible pH-responsive switch for peptide self-assembly. J Am Chem Soc 128(21):6770–6771. doi:10.1021/ja0605974

    Article  CAS  PubMed  Google Scholar 

  17. Aggeli A, Bell M, Boden N, Keen JN, Knowles PF, McLeish TC, Pitkeathly M, Radford SE (1997) Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature 386(6622):259–262. doi:10.1038/386259a0

    Article  CAS  PubMed  Google Scholar 

  18. Aggeli A, Bell M, Carrick LM, Fishwick CW, Harding R, Mawer PJ, Radford SE, Strong AE, Boden N (2003) pH as a trigger of peptide beta-sheet self-assembly and reversible switching between nematic and isotropic phases. J Am Chem Soc 125(32):9619–9628. doi:10.1021/ja021047i

    Article  CAS  PubMed  Google Scholar 

  19. Aggeli A, Nyrkova IA, Bell M, Harding R, Carrick L, McLeish TC, Semenov AN, Boden N (2001) Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci U S A 98(21):11857–11862. doi:10.1073/pnas.191250198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bowerman CJ, Liyanage W, Federation AJ, Nilsson BL (2011) Tuning beta-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity. Biomacromolecules 12(7):2735–2745. doi:10.1021/bm200510k

    Article  CAS  PubMed  Google Scholar 

  21. Dong H, Paramonov SE, Aulisa L, Bakota EL, Hartgerink JD (2007) Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure. J Am Chem Soc 129(41):12468–12472. doi:10.1021/ja072536r

    Article  CAS  PubMed  Google Scholar 

  22. Janek K, Behlke J, Zipper J, Fabian H, Georgalis Y, Beyermann M, Bienert M, Krause E (1999) Water-soluble beta-sheet models which self-assemble into fibrillar structures. Biochemistry 38(26):8246–8252. doi:10.1021/bi990510+

    Article  CAS  PubMed  Google Scholar 

  23. Marini DM, Hwang W, Lauffenburger DA, Zhang S, Kamm RD (2002) Left-handed helical ribbon intermediates in the self-assembly of a β-Sheet peptide. Nano Lett 2(4):295–299. doi:10.1021/nl015697g

    Article  CAS  Google Scholar 

  24. Matsumura S, Uemura S, Mihara H (2004) Fabrication of nanofibers with uniform morphology by self-assembly of designed peptides. Chemistry 10(11):2789–2794. doi:10.1002/chem.200305735

    Article  CAS  PubMed  Google Scholar 

  25. Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90(8):3334–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Swanekamp RJ, DiMaio JT, Bowerman CJ, Nilsson BL (2012) Coassembly of enantiomeric amphipathic peptides into amyloid-inspired rippled beta-sheet fibrils. J Am Chem Soc 134(12):5556–5559. doi:10.1021/ja301642c

    Article  CAS  PubMed  Google Scholar 

  27. Nagarkar RP, Hule RA, Pochan DJ, Schneider JP (2008) De novo design of strand-swapped beta-hairpin hydrogels. J Am Chem Soc 130(13):4466–4474. doi:10.1021/ja710295t

    Article  CAS  PubMed  Google Scholar 

  28. Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J Am Chem Soc 125(39):11802–11803. doi:10.1021/ja0353154

    Article  CAS  PubMed  Google Scholar 

  29. Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124(50):15030–15037

    Article  CAS  PubMed  Google Scholar 

  30. Choo DW, Schneider JP, Graciani NR, Kelly JW (1996) Nucleated antiparallel β-Sheet that folds and undergoes self-assembly: a template promoted folding strategy toward controlled molecular architectures. Macromolecules 29(1):355–366. doi:10.1021/ma950703e

    Article  CAS  Google Scholar 

  31. Cejas MA, Kinney WA, Chen C, Leo GC, Tounge BA, Vinter JG, Joshi PP, Maryanoff BE (2007) Collagen-related peptides: self-assembly of short, single strands into a functional biomaterial of micrometer scale. J Am Chem Soc 129(8):2202–2203. doi:10.1021/ja066986f

    Article  CAS  PubMed  Google Scholar 

  32. Cejas MA, Kinney WA, Chen C, Vinter JG, Almond HR Jr, Balss KM, Maryanoff CA, Schmidt U, Breslav M, Mahan A, Lacy E, Maryanoff BE (2008) Thrombogenic collagen-mimetic peptides: self-assembly of triple helix-based fibrils driven by hydrophobic interactions. Proc Natl Acad Sci U S A 105(25):8513–8518. doi:10.1073/pnas.0800291105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kar K, Ibrar S, Nanda V, Getz TM, Kunapuli SP, Brodsky B (2009) Aromatic interactions promote self-association of collagen triple-helical peptides to higher-order structures. Biochemistry 48(33):7959–7968. doi:10.1021/bi900496m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koide T, Homma DL, Asada S, Kitagawa K (2005) Self-complementary peptides for the formation of collagen-like triple helical supramolecules. Bioorg Med Chem Lett 15(23):5230–5233. doi:10.1016/j.bmcl.2005.08.041

    Article  CAS  PubMed  Google Scholar 

  35. O’Leary LE, Fallas JA, Hartgerink JD (2011) Positive and negative design leads to compositional control in AAB collagen heterotrimers. J Am Chem Soc 133(14):5432–5443. doi:10.1021/ja111239r

    Article  PubMed  Google Scholar 

  36. Przybyla DE, Perez CMR, Gleaton J, Nandwana V, Chmielewski J (2013) Hierarchical assembly of collagen peptide triple helices into curved disks and metal ion-promoted hollow spheres. J Am Chem Soc 135(9):3418–3422. doi:10.1021/ja307651e

    Google Scholar 

  37. Rele S, Song YH, Apkarian RP, Qu Z, Conticello VP, Chaikof EL (2007) D-periodic collagen-mimetic microfibers. J Am Chem Soc 129(47):14780–14787. doi:10.1021/ja0758990

    Google Scholar 

  38. Xu F, Li J, Jain V, Tu RS, Huang Q, Nanda V (2012) Compositional control of higher order assembly using synthetic collagen peptides. J Am Chem Soc 134(1):47–50. doi:10.1021/ja2077894

    Article  CAS  PubMed  Google Scholar 

  39. Yamazaki CM, Asada S, Kitagawa K, Koide T (2008) Artificial collagen gels via self-assembly of de novo designed peptides. Biopolymers 90(6):816–823. doi:10.1002/bip.21100

    Article  CAS  PubMed  Google Scholar 

  40. Kotch FW, Raines RT (2006) Self-assembly of synthetic collagen triple helices. Proc Natl Acad Sci U S A 103(9):3028–3033. doi:10.1073/pnas.0508783103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lanci CJ, MacDermaid CM, Kang SG, Acharya R, North B, Yang X, Qiu XJ, DeGrado WF, Saven JG (2012) Computational design of a protein crystal. Proc Natl Acad Sci U S A 109(19):7304–7309. doi:10.1073/pnas.1112595109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Briegel A, Wong ML, Hodges HL, Oikonomou CM, Piasta KN, Harris MJ, Fowler DJ, Thompson LK, Falke JJ, Kiessling LL, Jensen GJ (2014) New insights into bacterial chemoreceptor array structure and assembly from electron cryotomography. Biochemistry 53(10):1575–1585. doi:10.1021/bi5000614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vasa S, Lin L, Shi C, Habenstein B, Riedel D, Kuhn J, Thanbichler M, Lange A (2015) beta-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR. Proc Natl Acad Sci U S A 112(2):E127–E136. doi:10.1073/pnas.1418450112

    Article  CAS  PubMed  Google Scholar 

  44. Gundelfinger ED, Boeckers TM, Baron MK, Bowie JU (2006) A role for zinc in postsynaptic density asSAMbly and plasticity? Trends Biochem Sci 31(7):366–373. doi:10.1016/j.tibs.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  45. Knight MJ, Joubert MK, Plotkowski ML, Kropat J, Gingery M, Sakane F, Merchant SS, Bowie JU (2010) Zinc binding drives sheet formation by the SAM domain of diacylglycerol kinase delta. Biochemistry 49(44):9667–9676. doi:10.1021/bi101261x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baron MK, Boeckers TM, Vaida B, Faham S, Gingery M, Sawaya MR, Salyer D, Gundelfinger ED, Bowie JU (2006) An architectural framework that may lie at the core of the postsynaptic density. Science 311(5760):531–535. doi:10.1126/science.1118995

    Article  CAS  PubMed  Google Scholar 

  47. Ariga K, Ji QM, Hill JP, Bando Y, Aono M (2012) Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. Npg Asia Mater 4:ARTN e17. doi:10.1038/am.2012.30

    Google Scholar 

  48. Avinash MB, Govindaraju T (2014) Nanoarchitectonics of biomolecular assemblies for functional applications. Nanoscale 6(22):13348–13369. doi:10.1039/c4nr04340e

    Google Scholar 

  49. Govindaraju T, Avinash MB (2012) Two-dimensional nanoarchitectonics: organic and hybrid materials. Nanoscale 4(20):6102–6117. doi:10.1039/c2nr31167d

    Google Scholar 

  50. Messner P, Pum D, Sleytr UB (1986) Characterization of the ultrastructure and the self-assembly of the surface layer of Bacillus stearothermophilus strain NRS 2004/3a. J Ultrastruct Mol Struct Res 97(1–3):73–88

    Article  CAS  PubMed  Google Scholar 

  51. Taylor KS, Lou MZ, Chin TM, Yang NC, Garavito RM (1996) A novel, multilayer structure of a helical peptide. Protein Sci 5(3):414–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ogihara NL, Weiss MS, Degrado WF, Eisenberg D (1997) The crystal structure of the designed trimeric coiled coil coil-VaLd: implications for engineering crystals and supramolecular assemblies. Protein Sci 6(1):80–88. doi:10.1002/pro.5560060109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vasudev PG, Shamala N, Balaram P (2008) Nucleation, growth, and form in crystals of peptide helices. J Phys Chem B 112(4):1308–1314. doi:10.1021/jp077231d

    Article  CAS  PubMed  Google Scholar 

  54. Patterson WR, Anderson DH, DeGrado WF, Cascio D, Eisenberg D (1999) Centrosymmetric bilayers in the 0.75 A resolution structure of a designed alpha-helical peptide, D, L-Alpha-1. Protein Sci 8(7):1410–1422. doi:10.1110/ps.8.7.1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sleytr UB, Egelseer EM, Ilk N, Pum D, Schuster B (2007) S-Layers as a basic building block in a molecular construction kit. Febs J 274(2):323–334. doi:10.1111/j.1742-4658.2006.05606.x

    Article  CAS  PubMed  Google Scholar 

  56. Sleytr UB, Huber C, Ilk N, Pum D, Schuster B, Egelseer EM (2007) S-layers as a tool kit for nanobiotechnological applications. FEMS Microbiol Lett 267(2):131–144

    Article  CAS  PubMed  Google Scholar 

  57. Weiss MS, Anderson DH, Raffioni S, Bradshaw RA, Ortenzi C, Luporini P, Eisenberg D (1995) A cooperative model for receptor recognition and cell adhesion: evidence from the molecular packing in the 1.6-A crystal structure of the pheromone Er-1 from the ciliated protozoan Euplotes raikovi. Proc Natl Acad Sci U S A 92(22):10172–10176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Anderson DH, Weiss MS, Eisenberg D (1996) A challenging case for protein crystal structure determination: the mating pheromone Er-1 from Euplotes raikovi. Acta Crystallogr D Biol Crystallogr 52(Pt 3):469–480. doi:10.1107/S0907444995014235

    Article  CAS  PubMed  Google Scholar 

  59. Baranova E, Fronzes R, Garcia-Pino A, Van Gerven N, Papapostolou D, Pehau-Arnaudet G, Pardon E, Steyaert J, Howorka S, Remaut H (2012) SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature 487(7405):119–122. doi:10.1038/nature11155

    CAS  PubMed  Google Scholar 

  60. Pum D, Weinhandl M, Hodl C, Sleytr UB (1993) Large-scale recrystallization of the S-layer of Bacillus-Coagulans E38-66 at the air-water-interface and on lipid films. J Bacteriol 175(9):2762–2766

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Prive GG, Anderson DH, Wesson L, Cascio D, Eisenberg D (1999) Packed protein bilayers in the 0.90 angstrom resolution structure of a designed alpha helical bundle. Protein Sci 8(7):1400–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pum D, Toca-Herrera JL, Sleytr UB (2013) S-layer protein self-assembly. Int J Mol Sci 14(2):2484–2501. doi:10.3390/ijms14022484

    Google Scholar 

  63. Sleytr UB, Schuster B, Egelseer EM, Pum D (2014) S-layers: principles and applications. Fems Microbiol Rev 38(5):823–864. doi:10.1111/1574-6976.12063

    Google Scholar 

  64. Brodin JD, Ambroggio XI, Tang CY, Parent KN, Baker TS, Tezcan FA (2012) Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat Chem 4(5):375–382. doi:10.1038/Nchem.1290

    Google Scholar 

  65. Brodin JD, Carr JR, Sontz PA, Tezcan FA (2014) Exceptionally stable, redox-active supramolecular protein assemblies with emergent properties. P Natl Acad Sci USA 111(8):2897–2902. doi:10.1073/pnas.1319866111

    Google Scholar 

  66. Castelletto V, Hamley IW, Cenker C, Olsson U (2010) Influence of salt on the self-assembly of two model Amyloid Heptapeptides. J Phys Chem B 114(23):8002–8008. doi:10.1021/jp102744g

    Google Scholar 

  67. Castelletto V, Hamley IW, Harris PJF (2008) Self-assembly in aqueous solution of a modified amyloid beta peptide fragment. Biophys Chem 138(1–2):29–35. doi:10.1016/j.bpc.2008.08.007

    Google Scholar 

  68. Castelletto V, Hamley IW, Harris PJF, Olsson U, Spencer N (2009) Influence of the solvent on the self-assembly of a modified Amyloid beta peptide fragment. I. Morphological investigation. J Phys Chem B 113(29):9978–9987. doi:10.1021/jp902860a

    Google Scholar 

  69. Chothia C, Levitt M, Richardson D (1981) Helix to helix packing in proteins. J Mol Biol 145(1):215–250

    Article  CAS  PubMed  Google Scholar 

  70. Hamley IW, Dehsorkhi A, Castelletto V (2013) Self-assembled arginine-coated peptide nanosheets in water. Chem Commun 49(18):1850–1852. doi:10.1039/c3cc39057h

    Google Scholar 

  71. Hamley IW, Dehsorkhi A, Castelletto V, Furzeland S, Atkins D, Seitsonen J, Ruokolainen J (2013) Reversible helical unwinding transition of a self-assembling peptide amphiphile. Soft Matter 9(39):9290–9293. doi:10.1039/c3sm51725j

    Google Scholar 

  72. Dai B, Li D, Xi W, Luo F, Zhang X, Zou M, Cao M, Hu J, Wang W, Wei G, Zhang Y, Liu C (2015) Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier. Proc Natl Acad Sci U S A 112(10):2996–3001. doi:10.1073/pnas.1416690112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jang HS, Lee JH, Park YS, Kim YO, Park J, Yang TY, Jin K, Lee J, Park S, You JM, Jeong KW, Shin A, Oh IS, Kwon MK, Kim YI, Cho HH, Han HN, Kim Y, Chang YH, Paik SR, Nam KT, Lee YS (2014) Tyrosine-mediated two-dimensional peptide assembly and its role as a bio-inspired catalytic scaffold. Nat Commun 5:ARTN 3665. doi:10.1038/ncomms4665

  74. Jiang T, Vail OA, Jiang Z, Zuo X, Conticello VP (2015) Rational design of multilayer collagen nanosheets with compositional and structural control. J Am Chem Soc 137(24):7793–7802. doi:10.1021/jacs.5b03326

    Article  CAS  PubMed  Google Scholar 

  75. Jiang T, Xu CF, Liu Y, Liu Z, Wall JS, Zuo XB, Lian TQ, Salaita K, Ni CY, Pochan D, Conticello VP (2014) Structurally defined nanoscale sheets from self-assembly of collagen-mimetic peptides. J Am Chem Soc 136(11):4300–4308. doi:10.1021/ja412867z

    Google Scholar 

  76. Jiang T, Xu CF, Zuo XB, Conticello VP (2014) Structurally homogeneous nanosheets from self-assembly of a collagen-mimetic peptide. Angew Chem Int Edit 53(32):8367–8371. doi:10.1002/anie.201403780

    Google Scholar 

  77. Matmour R, De Cat I, George SJ, Adriaens W, Leclere P, Bomans PHH, Sommerdijk NAJM, Gielen JC, Christianen PCM, Heldens JT, van Hest JCM, Lowik DWPM, De Feyter S, Meijer EW, Schenning APHJ (2008) Oligo(p-phenylenevinylene)-peptide conjugates: synthesis and self-assembly in solution and at the solid-liquid interface. J Am Chem Soc 130(44):14576–14583. doi:10.1021/ja803026j

    Google Scholar 

  78. Matthaei JF, DiMaio F, Richards JJ, Pozzo LD, Baker D, Baneyx F (2015) Designing two-dimensional protein arrays through fusion of multimers and interface mutations. Nano Lett 15(8):5235–5239. doi:10.1021/acs.nanolett.5b01499

    Article  CAS  PubMed  Google Scholar 

  79. McGuinness K, Khan IJ, Nanda V (2014) Morphological diversity and polymorphism of self-assembling collagen peptides controlled by length of hydrophobic domains. Acs Nano 8(12):12514–12523. doi:10.1021/nn505369d

    Google Scholar 

  80. Nam KT, Shelby SA, Choi PH, Marciel AB, Chen R, Tan L, Chu TK, Mesch RA, Lee BC, Connolly MD, Kisielowski C, Zuckermann RN (2010) Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat Mater 9(5):454–460. doi:10.1038/Nmat2742

    Google Scholar 

  81. Olivier GK, Cho A, Sanii B, Connolly MD, Tran H, Zuckermann RN (2013) Antibody-Mimetic peptoid nanosheets for molecular recognition. Acs Nano 7(10):9276–9286. doi:10.1021/nn403899y

    Google Scholar 

  82. Pashuck ET, Stupp SI (2010) Direct observation of morphological tranformation from twisted ribbons into helical ribbons. J Am Chem Soc 132(26):8819−8821. doi:10.1021/ja100613w

    Google Scholar 

  83. Przybyla DE, Chmielewski J (2010) Metal-triggered collagen peptide disk formation. J Am Chem Soc 132(23):7866−7867. doi:10.1021/ja103148t

    Google Scholar 

  84. Robertson EJ, Oliver GK, Qian M, Proulx C, Zuckermann RN, Richmond GL (2014) Assembly and molecular order of two-dimensional peptoid nanosheets through the oil-water interface. P Natl Acad Sci USA 111(37):13284–13289. doi:10.1073/pnas.1414843111

    Google Scholar 

  85. Sanii B, Haxton TK, Olivier GK, Cho A, Barton B, Proulx C, Whitelam S, Zuckermann RN (2014) Structure-determining step in the hierarchical assembly of peptoid nanosheets. Acs Nano 8(11):11674–11684. doi:10.1021/nn505007u

    Google Scholar 

  86. Sanii B, Kudirka R, Cho A, Venkateswaran N, Olivier GK, Olson AM, Tran H, Harada RM, Tan L, Zuckermann RN (2011) Shaken, not stirred: collapsing a peptoid monolayer to produce free-floating, stable nanosheets. J Am Chem Soc 133(51):20808–20815. doi:10.1021/ja206199d

    Google Scholar 

  87. Xu F, Khan IJ, McGuinness K, Parmar AS, Silva T, Murthy NS, Nanda V (2013) Self-assembly of left- and right-handed molecular screws. J Am Chem Soc 135(50):18762–18765. doi:10.1021/ja4106545

    Google Scholar 

  88. Sinclair JC, Davies KM, Venien-Bryan C, Noble ME (2011) Generation of protein lattices by fusing proteins with matching rotational symmetry. Nat Nanotechnol 6(9):558–562. doi:10.1038/nnano.2011.122

    Article  CAS  PubMed  Google Scholar 

  89. Childers WS, Anthony NR, Mehta AK, Berland KM, Lynn DG (2012) Phase networks of cross-beta peptide assemblies. Langmuir 28(15):6386–6395. doi:10.1021/la300143j

    Article  CAS  PubMed  Google Scholar 

  90. Lu K, Jacob J, Thiyagarajan P, Conticello VP, Lynn DG (2003) Exploiting amyloid fibril lamination for nanotube self-assembly. J Am Chem Soc 125(21):6391–6393. doi:10.1021/ja0341642

    Article  CAS  PubMed  Google Scholar 

  91. Richter F, Leaver-Fay A, Khare SD, Bjelic S, Baker D (2011) De novo enzyme design using Rosetta3. Plos One 6(5):e19230. doi:10.1371/journal.pone.0019230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lai YT, Cascio D, Yeates TO (2012) Structure of a 16-nm cage designed by using protein oligomers. Science 336(6085):1129. doi:10.1126/science.1219351

    Article  CAS  PubMed  Google Scholar 

  93. Lai YT, Tsai KL, Sawaya MR, Asturias FJ, Yeates TO (2013) Structure and flexibility of nanoscale protein cages designed by symmetric self-assembly. J Am Chem Soc 135(20):7738–7743. doi:10.1021/ja402277f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Padilla JE, Colovos C, Yeates TO (2001) Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc Natl Acad Sci U S A 98(5):2217–2221. doi:10.1073/pnas.041614998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lai YT, Reading E, Hura GL, Tsai KL, Laganowsky A, Asturias FJ, Tainer JA, Robinson CV, Yeates TO (2014) Structure of a designed protein cage that self-assembles into a highly porous cube. Nat Chem 6(12):1065–1071. doi:10.1038/nchem.2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fairman R, Chao HG, Lavoie TB, Villafranca JJ, Matsueda GR, Novotny J (1996) Design of heterotetrameric coiled coils: evidence for increased stabilization by Glu(−)-Lys(+) ion pair interactions. Biochemistry 35(9):2824–2829. doi:10.1021/bi952784c

    Article  CAS  PubMed  Google Scholar 

  97. Plass KE, Grzesiak AL, Matzger AJ (2007) Molecular packing and symmetry of two-dimensional crystals. Acc Chem Res 40(4):287–293. doi:10.1021/ar0500158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

E.M. and V.P.C. thank the National Science Foundation grant CHE-1412580 for financial support. In addition, we acknowledge the generosity of many of the investigators cited in this review for providing original artwork for creation of the figures in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Conticello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Magnotti, E., Conticello, V. (2016). Two-Dimensional Peptide and Protein Assemblies. In: Cortajarena, A., Grove, T. (eds) Protein-based Engineered Nanostructures. Advances in Experimental Medicine and Biology, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-319-39196-0_3

Download citation

Publish with us

Policies and ethics