Skip to main content

Designed Protein Origami

  • Chapter
  • First Online:
Protein-based Engineered Nanostructures

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 940))

Abstract

Proteins are highly perfected natural molecular machines, owing their properties to the complex tertiary structures with precise spatial positioning of different functional groups that have been honed through millennia of evolutionary selection. The prospects of designing new molecular machines and structural scaffolds beyond the limits of natural proteins make design of new protein folds a very attractive prospect. However, de novo design of new protein folds based on optimization of multiple cooperative interactions is very demanding. As a new alternative approach to design new protein folds unseen in nature, folds can be designed as a mathematical graph, by the self-assembly of interacting polypeptide modules within the single chain. Orthogonal coiled-coil dimers seem like an ideal building module due to their shape, adjustable length, and above all their designability. Similar to the approach of DNA nanotechnology, where complex tertiary structures are designed from complementary nucleotide segments, a polypeptide chain composed of a precisely specified sequence of coiled-coil forming segments can be designed to self-assemble into polyhedral scaffolds. This modular approach encompasses long-range interactions that define complex tertiary structures. We envision that by expansion of the toolkit of building blocks and design strategies of the folding pathways protein origami technology will be able to construct diverse molecular machines.

*Author contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turoverov KK, Kuznetsova IM, Uversky VN (2010) The protein kingdom extended: ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation. Prog Biophys Mol Biol 102:73–84. doi:10.1016/j.pbiomolbio.2010.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fersht AR (2008) From the first protein structures to our current knowledge of protein folding: delights and scepticisms. Nat Rev Mol Cell Biol 9:650–654. doi:10.1038/nrm2446

    Article  CAS  PubMed  Google Scholar 

  3. Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science (80-) 338:1042–1046. doi:10.1126/science.1219021

    Google Scholar 

  4. Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) The protein folding problem. Annu Rev Biophys 37:289–316. doi:10.1146/annurev.biophys.37.092707.153558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647. doi:10.1038/nature04162

    Article  CAS  PubMed  Google Scholar 

  6. Berne BJ, Weeks JD, Zhou R (2009) Dewetting and hydrophobic interaction in physical and biological systems. Annu Rev Phys Chem 60:85–103. doi:10.1146/annurev.physchem.58.032806.104445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pauling L, Corey RB, Branson HR (1951) The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S A 37:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ramakrishnan C, Ramachandran GN (1965) Stereochemical criteria for polypeptide and protein chain conformations. Biophys J 5:909–933. doi:10.1016/S0006-3495(65)86759-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumar S, Nussinov R (2002) Close-range electrostatic interactions in proteins. ChemBioChem 3:604–617.doi:10.1002/1439-7633(20020703)3:7<604::AID-CBIC604>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  10. Makhatadze GI, Privalov PL (1995) Energetics of protein structure. Adv Protein Chem 47:307–425

    Article  CAS  PubMed  Google Scholar 

  11. Murphy KP (2001) Stabilization of protein structure. Methods Mol Biol 168:1–16. doi:10.1385/1-59259-193-0:001

    CAS  PubMed  Google Scholar 

  12. Baldwin RL (2007) Energetics of protein folding. J Mol Biol 371:283–301. doi:http://dx.doi.org/10.1016/j.jmb.2007.05.078

    Google Scholar 

  13. Guo W, Shea J-E, Berry RS (2006) The physics of the interactions governing folding and association of proteins. Ann NY Acad Sci 1066:34–53. doi:10.1196/annals.1363.025

    Article  Google Scholar 

  14. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sindelar CV, Hendsch ZS, Tidor B (1998) Effects of salt bridges on protein structure and design. Protein Sci 7:1898–1914. doi:10.1002/pro.5560070906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sinha N, Smith-Gill SJ (2002) Electrostatics in protein binding and function. Curr Protein Pept Sci 3:601–614

    Article  CAS  PubMed  Google Scholar 

  17. Plaxco KW, Simons KT, Baker D (1998) Contact order, transition state placement and the refolding rates of single domain proteins. J Mol Biol 277:985–994. doi:http://dx.doi.org/10.1006/jmbi.1998.1645

  18. Ivankov DN, Garbuzynskiy SO, Alm E et al (2003) Contact order revisited: influence of protein size on the folding rate. Protein Sci 12:2057–2062. doi:10.1110/ps.0302503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robertson AD, Murphy KP (1997) Protein structure and the energetics of protein stability. Chem Rev 97:1251–1267

    Article  CAS  PubMed  Google Scholar 

  20. Ghosh K, Dill KA (2009) Computing protein stabilities from their chain lengths. Proc Natl Acad Sci U S A 106:10649–10654. doi:10.1073/pnas.0903995106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Božič S, Doles T, Gradišar H, Jerala R (2013) New designed protein assemblies. Curr Opin Chem Biol 17:940–945. doi:10.1016/j.cbpa.2013.10.014

    Article  PubMed  Google Scholar 

  22. King NP, Lai Y-T (2013) Practical approaches to designing novel protein assemblies. Curr Opin Struct Biol 23:632–638. doi:10.1016/j.sbi.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  23. Salgado EN, Ambroggio XI, Brodin JD et al (2010) Metal templated design of protein interfaces. Proc Natl Acad Sci 107:1827–1832. doi:10.1073/pnas.0906852107

    Article  CAS  PubMed  Google Scholar 

  24. Huard DJE, Kane KM, Tezcan FA (2013) Re-engineering protein interfaces yields copper-inducible ferritin cage assembly. Nat Chem Biol 9:169–176. doi:10.1038/nchembio.1163

    Article  CAS  PubMed  Google Scholar 

  25. Brodin JD, Ambroggio XI, Tang C et al (2012) Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat Chem 4:375–382. doi:10.1038/nchem.1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anzini P, Xu C, Hughes S et al (2013) Controlling self-assembly of a peptide-based material via metal-Ion induced registry shift. J Am Chem Soc 135:10278–10281. doi:10.1021/ja404677c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fletcher JM, Harniman RL, Barnes FRH, et al (2013) Self-assembling cages from coiled-coil peptide modules. Science (80-) 340:595–599. doi:10.1126/science.1233936

    Google Scholar 

  28. Padilla JE, Colovos C, Yeates TO (2001) Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc Natl Acad Sci 98:2217–2221. doi:10.1073/pnas.041614998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lai Y-T, Tsai K-L, Sawaya MR et al (2013) Structure and flexibility of nanoscale protein cages designed by symmetric self-assembly. J Am Chem Soc 135:7738–7743. doi:10.1021/ja402277f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sinclair JC, Davies KM, Vénien-Bryan C, Noble MEM (2011) Generation of protein lattices by fusing proteins with matching rotational symmetry. Nat Nanotechnol 6:558–562. doi:10.1038/nnano.2011.122

    Article  CAS  PubMed  Google Scholar 

  31. King NP, Sheffler W, Sawaya MR et al (2012) Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science (80-) 336:1171–1174. doi:10.1126/science.1219364

    Google Scholar 

  32. Leaver-Fay A, Tyka M, Lewis SM et al (2011) Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574. doi:10.1016/B978-0-12-381270-4.00019-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. King NP, Bale JB, Sheffler W et al (2014) Accurate design of co-assembling multi-component protein nanomaterials. Nature 510:103–108. doi:10.1038/nature13404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hsia Y, Bale JB, Gonen S et al (2016) Design of a hyperstable 60-subunit protein icosahedron. Nature 535:136–139. doi:10.1038/nature18010

    Article  CAS  PubMed  Google Scholar 

  35. Lanci CJ, MacDermaid CM, Kang S et al (2012) Computational design of a protein crystal. Proc Natl Acad Sci 109:7304–7309. doi:10.1073/pnas.1112595109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barrick D, Ferreiro DU, Komives EA (2008) Folding landscapes of ankyrin repeat proteins: experiments meet theory. Curr Opin Struct Biol 18:27–34. doi:10.1016/j.sbi.2007.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cortajarena AL, Mochrie SGJ, Regan L (2011) Modulating repeat protein stability: the effect of individual helix stability on the collective behavior of the ensemble. Prot Sci 20:1042–1047. doi:10.1002/pro.638

    Article  CAS  Google Scholar 

  38. Parmeggiani F, Huang P-S, Vorobiev S et al (2015) A general computational approach for repeat protein design. J Mol Biol 427:563–575. doi:10.1016/j.jmb.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  39. De la Paz ML, Goldie K, Zurdo J et al (2002) De novo designed peptide-based amyloid fibrils. Proc Natl Acad Sci U S A 99:16052–16057. doi:10.1073/pnas.252340199

    Article  Google Scholar 

  40. Haines LA, Rajagopal K, Ozbas B et al (2005) Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J Am Chem Soc 127:17025–17029. doi:10.1021/ja054719o

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yanlian Y, Ulung K, Xiumei W et al (2009) Designer self-assembling peptide nanomaterials. Nano Today 4:193–210. doi:10.1016/j.nantod.2009.02.009

    Article  Google Scholar 

  42. Saaem I, LaBean TH (2013) Overview of DNA origami for molecular self-assembly. WIREs Nanomed Nanobiotechnol 5:150–162. doi:10.1002/wnan.1204

    Article  CAS  Google Scholar 

  43. Walshaw J, Woolfson DN (2001) SOCKET: a program for identifying and analysing coiled-coil motifs within protein structures. J Mol Biol 307:1427–1450. doi:10.1006/jmbi.2001.4545

    Article  CAS  PubMed  Google Scholar 

  44. Crick FHC (1953) The packing of α-helices: simple coiled-coils. Acta Crystallogr 6:689–697. doi:10.1107/S0365110X53001964

    Article  CAS  Google Scholar 

  45. Pauling L, Corey RB (1953) Compound helical configurations of polypeptide chains: structure of proteins of the α-keratin type. Nature 171:59–61. doi:10.1038/171059a0

    Article  CAS  PubMed  Google Scholar 

  46. Lupas A (1996) Coiled coils: new structures and new functions. Trends Biochem Sci 21:375–382. doi:10.1016/S0968-0004(96)10052-9

    Article  CAS  PubMed  Google Scholar 

  47. Burkhard P, Stetefeld J, Strelkov SV (2001) Coiled coils: a highly versatile protein folding motif. Trends Cell Biol 11:82–88. doi:10.1016/S0962-8924(00)01898-5

    Article  CAS  PubMed  Google Scholar 

  48. Lupas AN, Gruber M (2005) The structure of α-helical coiled coils. In: Parry DAD, John MS (eds). Academic Press, San Diego, CA, pp 37–38

    Google Scholar 

  49. Gruber M, Lupas AN (2003) Historical review: another 50th anniversary – new periodicities in coiled coils. Trends Biochem Sci 28:679–685. doi:10.1016/j.tibs.2003.10.008

    Article  CAS  PubMed  Google Scholar 

  50. Rose A, Schraegle SJ, Stahlberg EA, Meier I (2005) Coiled-coil protein composition of 22 proteomes – differences and common themes in subcellular infrastructure and traffic control. BMC Evol Biol 5:66. doi:10.1186/1471-2148-5-66

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rose A, Meier I (2004) Scaffolds, levers, rods and springs: diverse cellular functions of long coiled-coil proteins. Cell Mol Life Sci C 61:1996–2009. doi:10.1007/s00018-004-4039-6

    CAS  Google Scholar 

  52. Esteban MR, Giovinazzo G, de la Hera A, Goday C (1998) PUMA1: a novel protein that associates with the centrosomes, spindle and centromeres in the nematode parascaris. J Cell Sci 111:723–735

    CAS  PubMed  Google Scholar 

  53. O’Shea EK, Klemm JD, Kim PS, Alber T (1991) X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science (80-) 254:539–544

    Google Scholar 

  54. Steinmetz MO, Jelesarov I, Matousek WM et al (2007) Molecular basis of coiled-coil formation. Proc Natl Acad Sci 104:7062–7067. doi:10.1073/pnas.0700321104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grigoryan G, Reinke AW, Keating AE (2009) Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 458:859–864. doi:10.1038/nature07885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grigoryan G, Keating AE (2008) Structural specificity in coiled-coil interactions. Curr Opin Struct Biol 18:477–483. doi:10.1016/j.sbi.2008.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395:347–353. doi:10.1038/26412

    Article  CAS  PubMed  Google Scholar 

  58. Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43. doi:10.1038/371037a0

    Google Scholar 

  59. Dutta K, Alexandrov A, Huang H, Pascal SM (2001) pH-induced folding of an apoptotic coiled coil. Protein Sci 10:2531–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liang W, Warrick HM, Spudich JA (1999) A structural model for phosphorylation control of dictyostelium myosin II thick filament assembly. J Cell Biol 147:1039–1048. doi:10.1083/jcb.147.5.1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Farah CS, Reinach FC (1999) Regulatory properties of recombinant tropomyosins containing 5-hydroxytryptophan: Ca2 + -binding to troponin results in a conformational change in a region of tropomyosin outside the troponin binding site. Biochemistry 38:10543–10551. doi:10.1021/bi982813u

    Article  CAS  PubMed  Google Scholar 

  62. Woolfson DN (2005) The design of coiled-coil structures and assemblies. In: Parry DAD, John MS (eds). Academic Press, San Diego, CA, pp 79–112

    Google Scholar 

  63. Hodges RS, Saund AK, Chong PC et al (1981) Synthetic model for two-stranded alpha-helical coiled-coils. Design, synthesis, and characterization of an 86-residue analog of tropomyosin. J Biol Chem 256:1214–1224

    CAS  PubMed  Google Scholar 

  64. O’Shea EK, Lumb KJ, Kim PS (1993) Peptide “Velcro”: design of a heterodimeric coiled coil. Curr Biol 3:658–667. doi:10.1016/0960-9822(93)90063-T

    Article  PubMed  Google Scholar 

  65. Oakley MG, Kim PS (1998) A buried polar interaction can direct the relative orientation of helices in a coiled coil. Biochemistry 37:12603–12610. doi:10.1021/bi981269m

    Article  CAS  PubMed  Google Scholar 

  66. Harbury PB, Zhang T, Kim PS, Alber T (1993) A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262:1401–1407

    Article  CAS  PubMed  Google Scholar 

  67. Nautiyal S, Woolfson DN, King DS, Alber T (1995) A designed heterotrimeric coiled coil. Biochemistry 34:11645–11651. doi:10.1021/bi00037a001

    Article  CAS  PubMed  Google Scholar 

  68. Fairman R, Chao HG, Lavoie TB et al (1996) Design of heterotetrameric coiled coils: evidence for increased stabilization by Glu(−)-Lys(+) ion pair interactions. Biochemistry 35:2824–2829. doi:10.1021/bi952784c

    Article  CAS  PubMed  Google Scholar 

  69. Liu J, Zheng Q, Deng Y et al (2006) A seven-helix coiled coil. Proc Natl Acad Sci U S A 103:15457–15462. doi:10.1073/pnas.0604871103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Testa OD, Moutevelis E, Woolfson DN (2009) CC+: a relational database of coiled-coil structures. Nucleic Acids Res 37:D315–D322. doi:10.1093/nar/gkn675

    Article  CAS  PubMed  Google Scholar 

  71. Moutevelis E, Woolfson DN (2009) A periodic table of coiled-coil protein structures. J Mol Biol 385:726–732. doi:10.1016/j.jmb.2008.11.028

    Article  CAS  PubMed  Google Scholar 

  72. Naik RR, Kirkpatrick SM, Stone MO (2001) The thermostability of an alpha-helical coiled-coil protein and its potential use in sensor applications. Biosens Bioelectron 16:1051–1057. doi:10.1016/j.ijfoodmicro.2010.12.030

    Article  CAS  PubMed  Google Scholar 

  73. Sharma VA, Logan J, King DS et al (1998) Sequence-based design of a peptide probe for the APC tumor suppressor protein. Curr Biol 8:823–830. doi:10.1016/S0960-9822(98)70324-0

    Article  CAS  PubMed  Google Scholar 

  74. Reinke AW, Grant RA, Keating AE (2010) A synthetic coiled-coil interactome provides heterospecific modules for molecular engineering. J Am Chem Soc 132:6025–6031. doi:10.1021/ja907617a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Havranek JJ, Harbury PB (2003) Automated design of specificity in molecular recognition. Nat Struct Mol Biol 10:45–52. doi:10.1038/nsb877

    Article  CAS  Google Scholar 

  76. Bromley EHC, Sessions RB, Thomson AR, Woolfson DN (2008) Designed α-helical tectons for constructing multicomponent synthetic biological systems. J Am Chem Soc 131:928–930. doi:10.1021/ja804231a

    Article  Google Scholar 

  77. Gradišar H, Jerala R (2011) De novo design of orthogonal peptide pairs forming parallel coiled-coil heterodimers. J Pept Sci 17:100–106. doi:10.1002/psc.1331

    Article  PubMed  Google Scholar 

  78. Negron C, Keating AE (2014) A set of computationally designed orthogonal antiparallel homodimers that expands the synthetic coiled-coil toolkit. J Am Chem Soc 136:16544–16556. doi:10.1021/ja507847t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Armstrong CT, Vincent TL, Green PJ, Woolfson DN (2011) SCORER 2.0: an algorithm for distinguishing parallel dimeric and trimeric coiled-coil sequences. Bioinformatics 27:1908–1914. doi:10.1093/bioinformatics/btr299

    Article  CAS  PubMed  Google Scholar 

  80. Mahrenholz CC, Abfalter IG, Bodenhofer U et al (2011) Complex networks govern coiled-coil oligomerization – predicting and profiling by means of a machine learning approach. Mol Cell Proteomics 10:M110.004994. doi:10.1074/mcp.M110.004994

    Article  PubMed  PubMed Central  Google Scholar 

  81. Li C, Wang X-F, Chen Z et al (2015) Computational characterization of parallel dimeric and trimeric coiled-coils using effective amino acid indices. Mol Biosyst 11:354–360. doi:10.1039/C4MB00569D

    Article  CAS  PubMed  Google Scholar 

  82. Trigg J, Gutwin K, Keating AE, Berger B (2011) Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone. PLoS One 6:e23519. doi:10.1371/journal.pone.0023519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vincent TL, Green PJ, Woolfson DN (2013) LOGICOIL—multi-state prediction of coiled-coil oligomeric state. Bioinformatics 29:69–76. doi:10.1093/bioinformatics/bts648

    Article  CAS  PubMed  Google Scholar 

  84. Hagemann UB, Mason JM, Müller KM, Arndt KM (2008) Selectional and mutational scope of peptides sequestering the Jun–Fos coiled-coil domain. J Mol Biol 381:73–88. doi:10.1016/j.jmb.2008.04.030

    Article  CAS  PubMed  Google Scholar 

  85. Sowdhamini R, Alva V, Syamala Devi D (2008) COILCHECK: an interactive server for the analysis of interface regions in coiled coils. Protein Pept Lett 15:33–38. doi:10.2174/092986608783330314

    Article  PubMed  Google Scholar 

  86. Wood CW, Bruning M, Ibarra AÁ et al (2014) CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies. Bioinformatics 30:3029–3035. doi:10.1093/bioinformatics/btu502

    Article  PubMed  PubMed Central  Google Scholar 

  87. Strelkov SV, Burkhard P (2002) Analysis of α-helical coiled coils with the program TWISTER reveals a structural mechanism for stutter compensation. J Struct Biol 137:54–64. doi:10.1006/jsbi.2002.4454

    Article  CAS  PubMed  Google Scholar 

  88. Grigoryan G, DeGrado WF (2011) Probing designability via a generalized model of helical bundle geometry. J Mol Biol 405:1079–1100. doi:10.1016/j.jmb.2010.08.058

    Article  CAS  PubMed  Google Scholar 

  89. Gurnon DG, Whitaker JA, Oakley MG (2003) Design and characterization of a homodimeric antiparallel coiled coil. J Am Chem Soc 125:7518–7519. doi:10.1021/ja0357590

    Article  CAS  PubMed  Google Scholar 

  90. Taylor CM, Keating AE (2005) Orientation and oligomerization specificity of the Bcr coiled-coil oligomerization domain†. Biochemistry 44:16246–16256. doi:10.1021/bi051493t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gradišar H, Božič S, Doles T et al (2013) Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nat Chem Biol 9:362–366. doi:10.1038/nchembio.1248

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fijavž G, Pisanski T, Rus J (2015) Strong traces model of self-assembly polypeptide structures. MATCH Commun Math Comput Chem 71:199–212

    Google Scholar 

  93. Kočar V, Schreck JS, Čeru S, Gradišar H, Bašić N, Pisanski T, Doye JP, Jerala R (2016) Design principles for rapid folding of knotted DNA nanostructures. Nat Commun 7:10803. doi:10.1038/ncomms10803

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302. doi:10.1038/nature04586

    Article  CAS  PubMed  Google Scholar 

  95. Ke Y, Ong LL, Shih WM, Yin P (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338:1177–1183. doi:10.1126/science.1227268

    Article  CAS  PubMed  Google Scholar 

  96. Zhang DY, Winfree E (2009) Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc 131:17303–17314. doi:10.1021/ja906987s

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Jerala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Drobnak, I., Ljubetič, A., Gradišar, H., Pisanski, T., Jerala, R. (2016). Designed Protein Origami. In: Cortajarena, A., Grove, T. (eds) Protein-based Engineered Nanostructures. Advances in Experimental Medicine and Biology, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-319-39196-0_2

Download citation

Publish with us

Policies and ethics