Skip to main content

Bioavailability in Delivery to the Skin

  • Chapter
  • First Online:
Bionanomaterials for Skin Regeneration

Part of the book series: SpringerBriefs in Bioengineering ((BRIEFSBIOENG))

  • 951 Accesses

Abstract

After oral administration of drugs, they undergo various phases of pharmacokinetics such as absorption, distribution, metabolism, and excretion (ADME). Absorption may also involve liberation of active ingredients from their respective formulation or delivery system. In practical terms, the bioavailability of the drug is the fraction of the intact drug, in its active form, that reaches the site of action. Typically, in oral drug administration, it must travel through the acidic pH of the stomach, the intestine wall, to blood circulation and finally to the target site. During this journey, drugs could be chemically metabolized in the intestine and liver. Also, the intestinal wall poses a permeability barrier to the drugs which depends upon the physiochemical characteristics of the molecules. Similarly, transdermal administration also has a barrier, the epidermal/dermal drug barrier. As discussed in previous chapters, the stratum corneum (SC), the top layer of the skin, provides the main barrier to the skin. Both skin and intestine wall contain lipid bilayers through which drugs must pass. The permeability of the intestine wall is much higher compared to the SC in the skin. There have always been challenges to delivering the therapeutic amounts of drugs to targets. Bioavailability in transdermal drugs delivery is mostly limited by instability of the compound and by the skin barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riboli E, Norat T (2003) Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am J Clin Nutr 78:559S–569S

    CAS  PubMed  Google Scholar 

  2. Key TJ, Schatzkin A, Willett WC, Allen NE, Spencer EA, Travis RC (2004) Diet nutrition and the prevention of cancer. Public Health Nutr 7:187–200

    Article  PubMed  Google Scholar 

  3. Hung HC, Joshipura KJ, Jiang R, Hu FB, Hunter D, Smith-Warner SA, Colditz GA, Rosner B, Spiegelman D, Willett WC (2004) Fruit and vegetable intake and risk of major chronic disease. J Natl Cancer Inst 96:1577–1584

    Article  PubMed  Google Scholar 

  4. Aquil F, Munaagala R, Jeyabalan J, Vadhanam MV (2013) Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett 334:133–141

    Article  Google Scholar 

  5. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818

    Article  CAS  PubMed  Google Scholar 

  6. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  7. Choy YB (2011) The Rule of Five for non-oral routes of drug delivery: ophthalmic, inhalation and transdermal. Pharm Res 28:943–948

    Article  CAS  PubMed  Google Scholar 

  8. Bolzinger M-A, Briancon S, Pelletier J, Chevalier Y (2012) Penetration of drugs through skin, a complex rate-controlling membrane. Curr Opin Colloid Interface Sci 17:156–165

    Article  CAS  Google Scholar 

  9. Nemes Z, Steinert PM (1999) Bricks and mortar of the epidermal barrier. Exp Mol Med 31:5–19

    Article  CAS  PubMed  Google Scholar 

  10. Maghrabya E, Barry BW, Williamsd AC (2008) Liposomes and skin: from drug delivery to model membrane. Eur J Pharm Sci 34:203–222

    Article  Google Scholar 

  11. Williams AC (2003) Transdermal and topical drug delivery: from theory to clinical practice. Pharmaceutical Press, London, pp 1–242

    Google Scholar 

  12. Tenjarla SN, Puranajoti P, Kasina R, Mandal T (1996) Terbutaline transdermal delivery: preformulation studies and limitations of in vitro predictive parameters. J Pharm Pharmacol 48:1138–1142

    Article  CAS  PubMed  Google Scholar 

  13. N’Da DD (2014) Prodrug strategies for enhancing the percutaneous absorption of drugs. Molecules 19:20780–20787

    Article  PubMed  Google Scholar 

  14. Abdou HM (1989) Dissolution, bioavailability and bioequivalence. Mack Publishing Company, Easton, pp 52–73

    Google Scholar 

  15. Billich A, Vyplel H, Grassberger M, Schmook FP, Steck A, Stuetz A (2005) Novel cyclosporine derivatives featuring enhanced skin penetration despite increased molecular weight. Bioorg Med Chem 13:3157–3167

    Article  CAS  PubMed  Google Scholar 

  16. Pugh WJ, Roberts MS, Hadgraft J (1996) Epidermal permeability: penetrant structure relationships. The effect of hydrogen bonding interactions and molecular size on diffusion through the stratum corneum. Int J Pharm 138:149–165

    Article  CAS  Google Scholar 

  17. Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366:170–184

    Article  CAS  PubMed  Google Scholar 

  18. Nasir A, Friedman A, Wang S (eds) (2013) Nanotechnology in dermatology. Springer, New York/Heidelberg/Dordrecht/London, pp 63–174

    Book  Google Scholar 

  19. Elliott NT, Yuan F (2011) A review of three-dimensional in vitro tissue models for drug. J Pharm Sci 100:59–74

    Article  CAS  PubMed  Google Scholar 

  20. Mathes SH, Ruffner H, Graf-Hausner U (2014) The use of skin models in drug development. Adv Drug Deliv Rev 69–70:81–102

    Article  PubMed  Google Scholar 

  21. Fentem JH, Botham PA (2002) ECVAM’s activities in validating alternative tests for skin corrosion and irritation. Altern Lab Anim 30(Suppl 2):61–67

    CAS  PubMed  Google Scholar 

  22. Alepee N, Tornier C, Robert C, Amsellem C, Roux MH, Doucet O, Pachot J, Meloni M, de Brugerolle de Fraissinette A (2010) A catch-up validation study on reconstructed human epidermis (SkinEthic RHE) for full replacement of the Draize skin irritation test. Toxicol In Vitro 24:257–266

    Article  CAS  PubMed  Google Scholar 

  23. Kandarova H, Hayden P, Klausner M, Kubilus J, Kearney P, Sheasgreen J (2009) In vitro skin irritation testing: improving the sensitivity of the EpiDerm skin irritation test protocol. Altern Lab Anim 37:671–689

    CAS  PubMed  Google Scholar 

  24. Schmook FP, Meingassner JG, Billich A (2001) Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int J Pharm 215:51–56

    Article  CAS  PubMed  Google Scholar 

  25. Van Gele M, Geusens B, Brochez L, Speeckaert R, Lambert J (2011) Three-dimensional skin models as tools for transdermal drug delivery: challenges and limitations. Expert Opin Drug Deliv 8:705–720

    Article  PubMed  Google Scholar 

  26. Schafer-Korting M, Bock U, Gamer A, Haberland A, Haltner-Ukomadu E, Kaca M, Kamp H, Kietzmann M, Korting HC, Krachter HU, Lehr CM, Liebsch M, Mehling A, Netzlaff F, Niedorf F, Rubbelke MK, Schafer U, Schmidt E, Schreiber S, Schroder KR, Spielmann H, Vuia A (2006) Reconstructed human epidermis for skin absorption testing: results of the German prevalidation study. Altern Lab Anim 34:283–294

    PubMed  Google Scholar 

  27. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leonida, M.D., Kumar, I. (2016). Bioavailability in Delivery to the Skin. In: Bionanomaterials for Skin Regeneration. SpringerBriefs in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-39168-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39168-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39166-3

  • Online ISBN: 978-3-319-39168-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics