Skip to main content

Skin, Genetic Defects, and Aging

  • Chapter
  • First Online:
Bionanomaterials for Skin Regeneration

Part of the book series: SpringerBriefs in Bioengineering ((BRIEFSBIOENG))

  • 967 Accesses

Abstract

The skin is the largest organ of the human body and comprises a total surface area of approximately 2 m2. The skin has multiple functions such as protection against external environmental factors, sensation, heat regulation, control of water evaporation, synthesis of vitamin D, and many more. At the cellular level, it comprises three layers, from top to bottom: epidermis, dermis, and hypodermis [1]. The epidermis is mainly composed of three kinds of cells: keratinocytes, melanocytes, and Langerhans cells [2]. The epidermis is the uppermost layer of skin and further contains several sublayers (Fig. 2.1) [3]. The epidermis functions as a barrier of the skin, which protects humans from invasion of pathogenic potentially infectious foreign particles into the body. It can have different degrees of thickness at various sites of the body. The epidermis is connected to the dermis via a basal membrane. The kerotinocytes residing on the basal layer undergo cell division. As it progresses, the keratinocytes move upward through different layers named spinous, granular, and cornified layer (stratum corneum, SC), and eventually are lost from the skin surface by desquamation [4]. The epidermis does not have any primary blood supply, hence it receives all nutrients from the dermis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quinn AG (2004) Biology of the skin and dermatological disease. Medicine 32:1–3

    Article  Google Scholar 

  2. Fore-Pfliger J (2004) The epidermal skin barrier: implications for the wound care practitioner, part II. Adv Skin Wound Care 17(9):480–488

    Article  PubMed  Google Scholar 

  3. Licensed under Public Domain (2013). https://commons.wikimedia.org/wiki/File:501_Structure_of_the_skin.jpg#filelinks. Licensed under the Creative Commons Attribution 3.0 Unported license. Source: Anatomy & Physiology, Author: OpenStax College, http://cnx.org/content/col11496/1.6/. Accessed 19 June 2016

  4. Elias P (1983) Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 80:44s–49s

    Article  CAS  Google Scholar 

  5. Nemes Z, Steinert PM (1999) Bricks and mortar of the epidermal barrier. Exp Mol Med 31:5–19

    Article  CAS  PubMed  Google Scholar 

  6. Hohl D (1990) The cornified cell envelope. Dermatologica 180:201–211

    Article  CAS  PubMed  Google Scholar 

  7. Reichert U, Michel S, Schmidt R (1993) The cornified envelope: a key structure of terminally differentiating keratinocytes. In: Darmon M, Bloomenberg M (eds) Molecular biology of the skin. The Keratinocyte. Academic, San Diego, pp 107–150

    Google Scholar 

  8. Simon M (1994) The epidermal cornified envelope and its precursors. In: Leigh IM, Lane EB, Watt FM (eds) The keratinocyte handbook. Cambridge University Press, Cambridge, UK, pp 275–292

    Google Scholar 

  9. Eckert RL, Crish JF, Robinson NA (1997) The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation. Physiol Rev 77:397–424

    CAS  PubMed  Google Scholar 

  10. Wertz PW, Downing DT (1991) Epidermal lipids. In: Goldsmith LA (ed) Physiology, biochemistry and molecular biology of the skin. Oxford University Press, Oxford, pp 205–236

    Google Scholar 

  11. Swartzendruber DC, Wertz PW, Madison KC, Downing DT (1987) Evidence that the corneocyte has a chemically bound lipid envelope. J Invest Dermatol 88:709–713

    Article  CAS  PubMed  Google Scholar 

  12. Wertz PW, Madison KC, Downing DT (1989) Covalently bound lipids of human stratum corneum. J Invest Dermatol 92:109–111

    Article  CAS  PubMed  Google Scholar 

  13. Marekov LN, Steinert PM (1998) Ceramides are bound to structural proteins of the human foreskin epidermal cornified cell envelope. J Biol Chem 273:17763–17770

    Article  CAS  PubMed  Google Scholar 

  14. Landmann L (1980) Lamellar granules in mammalian, avian, and reptilian epidermis. J Ultrastruct Res 72:245–263

    Article  CAS  PubMed  Google Scholar 

  15. Landmann L (1986) Epidermal permeability barrier: transformation of lamellar granule disks into intercellular sheets by a membrane-fusion process, a freeze- fracture study. J Invest Dermatol 87:202–209

    Article  CAS  PubMed  Google Scholar 

  16. Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6:328–340

    Article  CAS  PubMed  Google Scholar 

  17. Sandilands A, Sutherland C, Irvine AD, McLean WH (2009) Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci 122:1285–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Breitkreutz D, Mirancea N, Nischt R (2009) Basement membranes in skin: unique matrix structures with diverse functions? Histochem Cell Biol 132:1–10

    Article  CAS  PubMed  Google Scholar 

  19. Calleja-Agius J, Brincat M, Borg M (2013) Skin connective tissue and aging. Best Pract Res Clin Obstet Gynaecol 27:727–740

    Article  PubMed  Google Scholar 

  20. Yang CC, Cotsarelisa G (2010) Review of hair follicle dermal cells. J Dermatol Sci 57:1–15

    Article  Google Scholar 

  21. Tobin DJ, Gunin A, Magerl M, Handijski B, Paus R (2003) Plasticity and cytokinetic dynamics of the hair follicle mesenchyme: implications for hair growth control. J Invest Dermatol 120:895–904

    Article  CAS  PubMed  Google Scholar 

  22. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11:1351–1354

    Article  CAS  PubMed  Google Scholar 

  23. Adams JU (2011) Raising hairs. Nat Biotechnol 29:474–476

    Article  CAS  PubMed  Google Scholar 

  24. Russell LJ, DiGiovanna JJ, Rogers GR, Steinert PM, Hashem N, Compton JG, Bale SJ (1995) Mutations in the gene for trans-glutaminase 1 in autosomal recessive lamellar ichthyosis. Nat Genet 9:279–283

    Article  CAS  PubMed  Google Scholar 

  25. Ishida-Yamamoto A, McGrath JA, Lam H, Iizuka H, Friedman RA, Christiano AM (1997) The molecular pathology of progressive symmetric erythrokeratoderma: a frameshift mutation in the loricrin gene and perturbations in the cornified cell envelope. Am J Hum Genet 61:581–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huber M, Rettler I, Bernasconi K, Frenk E, Lavrijsen SP, Ponec M, Bon A, Lautenschlager S, Schordaret DF, Hohl D (1995) Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science 267:525–528

    Article  CAS  PubMed  Google Scholar 

  27. Maestrini E, Monaco AP, McGrath JA, Ishida-Yamamoto A, Camisa C, Hovnanian A, Weeks DE, Lathrop M, Uitto J, Christiano AM (1996) A molecular defect in loricrin, the major component of the cornified cell envelope, underlies Vohwinkel’s syndrome. Nat Genet 13:70–77

    Article  CAS  PubMed  Google Scholar 

  28. Lane EB (2000/2013) Keratin intermediate filaments and diseases of the skin. In: Madame Curie bioscience database [Internet]. Landes Bioscience, Austin

    Google Scholar 

  29. Parry DAD, Steinert PM (1995) The structure and function of intermediate filaments. E. Landis Publishing Company, Austin

    Google Scholar 

  30. Steinert PM (1996) Intermediate filaments in health and disease. Exp Mol Med 29:55–63

    Article  Google Scholar 

  31. Kimonis V, DiGiovanna JJ, Yang J-M, Dolye SZ, Bale SJ, Compton JG (1994) A mutation in the V1 end domain of keratin 1 in non-epidermolytic palmar-plantar keratoderma. J Invest Dermatol 103:764–769

    Article  CAS  PubMed  Google Scholar 

  32. Candi E, Tarcsa E, Digiovanna JJ, Compton JG, Elias PM, Marekov LN, Steinert PM (1998) A highly conserved lysine residue on the head domain of type II keratins is essential for the attachment of keratin intermediate filaments to the cornified cell envelope through isopeptide crosslinking by transglutaminases. Proc Natl Acad Sci U S A 95:2067–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shapiro LJ, Weiss R, Buxman MM, Vidgoff J, Dimond RL, Roller JA, Wells RS (1978) Enzymatic basis of typical X-linked icthyosis. Lancet 2:756–757

    Article  CAS  PubMed  Google Scholar 

  34. Nemes Z, Demény M, Marekov LN, Fésüs L, Steinert PM (2000) Cholesterol 3-sulfate interferes with cornified envelope assembly by diverting transglutaminase 1 activity from the formation of cross-links and esters to the hydrolysis of glutamine. J Biol Chem 275:2636–2646

    Article  CAS  PubMed  Google Scholar 

  35. Jobard F, Lefèvre C, Karaduman A, Blanchet-Bardon C, Emre S, Weissenbach J, Ozgüc M, Lathrop M, Prud’homme JF, Fischer J (2002) Lipoxygenase-3 (ALOXE3) and 12(R)- lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1. Hum Mol Genet 11:107–113

    Article  CAS  PubMed  Google Scholar 

  36. De Laurenzi V, Rogers GR, Hamrock DJ, Marekov LN, Steinert PM, Compton JG, Markova N, Rizzo WB (1996) Sjögren–Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene. Nat Genet 12:52–57

    Article  PubMed  Google Scholar 

  37. Sidransky E, Sherer DM, Ginns EI (1992) Gaucher disease in the neonate: a distinct Gaucher phenotype is analogous to a mouse model created by targeted disruption of the glucocerebrosidase gene. Pediatr Res 32:494–498

    Article  CAS  PubMed  Google Scholar 

  38. Lefèvre C, Jobard F, Caux F, Bouadjar B, Karaduman A, Heilig R, Lakhdar H, Wollenberg A, Verret JL, Weissenbach J, Ozgüc M, Lathrop M, Prud’homme JF, Fischer J (2001) Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin–Dorfman syndrome. Am J Hum Genet 69:1002–1012

    Article  PubMed  PubMed Central  Google Scholar 

  39. Akiyama M, Sawamura D, Nomura Y, Sugawara M, Shimizu H (2003) Truncation of CGI-58 protein causes malformation of lamellar granules resulting in ichthyosis in Dorfman–Chanarin syndrome. J Invest Dermatol 12:1029–1034

    Article  Google Scholar 

  40. Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, Bonafé JL, Wilkinson J, Taïeb A, Barrandon Y, Harper JI, de Prost Y, Hovnanian A (2000) Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 25:141–142

    Article  CAS  PubMed  Google Scholar 

  41. Hart TC, Hart TC, Hart PS, Bowden DW, Michalec MD, Callison SA, Walker SJ, Zhang Y, Firatli E et al (1999) Mutations of the cathepsin C gene are responsible for Papillon–Lefevre syndrome. J Med Genet 36:881–887

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kammeyer A, Luiten RM (2015) Oxidation events and skin ageing. Ageing Res Rev 21:16–29

    Article  CAS  PubMed  Google Scholar 

  43. Pfeifer GP, You YH, Besaratinia A (2005) Mutations induced by ultraviolet light. Mutat Res 571:19–31

    Article  CAS  PubMed  Google Scholar 

  44. Watson RE, Gibbs NK, Griffiths CE, Sherratt MJ (2014) Damage to skin extracellular matrix induced by UV exposure. Antioxid Redox Signal 21:1063–1077

    Article  CAS  PubMed  Google Scholar 

  45. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubeli I, Pereira-Smith O (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, Voorhees JJ (2002) Mechanisms of photoaging and chronological skin aging. Arch Dermatol 138:1462–1470

    Article  CAS  PubMed  Google Scholar 

  47. Quan T, He T, Kang S, Voorhees JJ, Fisher GJ (2002) Ultraviolet irradiation alters transforming growth factor beta/smad pathway in human skin in vivo. J Invest Dermatol 119:499–506

    Article  CAS  PubMed  Google Scholar 

  48. Tammi R, Pasonen-Seppanen S, Kolehmainen E, Tammi M (2005) Hyaluronansynthase induction and hyaluronan accumulation in mouse epidermis following skin injury. J Invest Dermatol 124:898–905

    Article  CAS  PubMed  Google Scholar 

  49. Dai G, Freudenberger T, Zipper P, Melchior A, Grether-Beck S, Rabausch B, De GJ, Twarock S, Hanenberg H, Homey B, Krutmann J, Reifenberger J, Fischer JW (2007) Chronic ultraviolet B irradiation causes loss of hyaluronic acid from mouse dermis because of down-regulation of hyaluronic acid synthases. Am J Pathol 171:1451–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Birkedal-Hansen H (1987) Catabolism and turnover of collagens: collagenases. Methods Enzymol 144:140–171

    Article  CAS  PubMed  Google Scholar 

  51. Krieg T, Hein R, Hatamochi A, Aumailley M (1988) Molecular and clinical aspects of connective tissue. Eur J Clin Invest 18:105–123

    Article  CAS  PubMed  Google Scholar 

  52. Starcher B, Conrad M (1995) A role for neutrophil elastase in the progression of solar elastosis. Connect Tissue Res 31:133–140

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leonida, M.D., Kumar, I. (2016). Skin, Genetic Defects, and Aging. In: Bionanomaterials for Skin Regeneration. SpringerBriefs in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-39168-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39168-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39166-3

  • Online ISBN: 978-3-319-39168-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics