Skip to main content

Peptide and Protein-Based Nanomaterials in Applications for the Skin

  • Chapter
  • First Online:
Bionanomaterials for Skin Regeneration

Part of the book series: SpringerBriefs in Bioengineering ((BRIEFSBIOENG))

  • 983 Accesses

Abstract

Due to the properties of the stratum corneum (SC), only small, lipophilic molecules (<500–800 Da, depending on source and application) can be absorbed through the skin. This excludes amphoteric molecules (like proteins, 300–1,000,000 Da) [1]. However, topical application of peptides/proteins with short half-life was shown to increase their stability while affording controlled delivery from different formulations [2]. Besides applications in the treatment of skin disease and regeneration, a new domain of special interest emerged, using proteins in substitution therapy of proteins which are deficient in the skin due to genetic mutations (e.g. in Ichthyosis vulgaris and others, Chap. 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wittig M, Obst K, Friess W, Hedtrich S (2015) Recent advances in topical delivery of proteins and peptides mediated by soft matter nanocarriers. Biotechnol Adv 33(6):1355–1369

    Article  Google Scholar 

  2. Amsden BG, Goosen MFA (1995) Transdermal delivery of peptide and protein drugs: an overview. AIChE J 41(8):1972–1997

    Article  CAS  Google Scholar 

  3. Jain A, Jain A, Gulbake A, Shilpi S, Hulkar P, Jain SK (2013) Peptide and protein delivery using new drug delivery systems. Crit Rev Ther Drug Carrier Syst 30:293–329

    Article  CAS  PubMed  Google Scholar 

  4. Pasut G, Veronese FM (2009) PEG conjugates in clinical development or use as anticancer agents: an overview. Adv Drug Deliv Rev 61(13):177–188

    Article  Google Scholar 

  5. Jutz G, Bӧker A (2011) Bionanoparticles as functional macromolecular building blocks – a new class of nanomaterials. Polymer 52:211–232

    Article  CAS  Google Scholar 

  6. Varshochian R, Jeddi-Tehrani M, Mahmoud AR, Khoshayand MR, Atyabi F, Sabzevari A, Esfahani MR, Dinarvand R (2013) The protective effect of albumin on bevacizumab activity and stability in PLGA nanoparticles intended for retinal and choroidal neovascularization treatment. Eur J Pharm Sci 50:341–352

    Article  CAS  PubMed  Google Scholar 

  7. Liu S, Jones I, Gu FX (2012) Development of mucoadhesive drug delivery system using phenylboronic acid functionalized poly(D, L-lactide)-β-dextran nanoparticles. Macromol Biosci 12:1622–1626

    Article  CAS  PubMed  Google Scholar 

  8. Tocco I, Zavan B, Bassetto F, Vindigni V (2012) Nanotechnology-based therapies for skin wound regeneration. J Nanomater. doi:10.1155/2012/714134

    Google Scholar 

  9. Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M (2015) Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine 11:1551–1573

    CAS  PubMed  Google Scholar 

  10. Sakai T, Kuno N, Takamatsu F, Kimura F, Kohno H, Okano K (2007) Prolonged protective effect of basic fibroblast growth factor-impregnated nanoparticles in royal college of surgeon rats. Invest Ophthalmol Vis Sci 48:3381–3387

    Article  PubMed  Google Scholar 

  11. Jin G, Prabhakaran MP, Ramakrishna S (2014) Photosensitive and biomimetic core-shell nanofibrous scaffolds as wound dressing. Photochem Photobiol 90:673–681

    Article  CAS  PubMed  Google Scholar 

  12. Matsusaki M, Sakaguchi H, Serizawa T, Akashi M (2007) Controlled release of vascular endothelial growth factor from alginate hydrogels nano-coated with polyelectrolyte multilayer films. J Biomater Sci Polym Ed 18(6):775–783

    Article  CAS  PubMed  Google Scholar 

  13. Mizuno K, Yamamura K, Yano K, Osada T, Takimoto N, Sakurai T, Nimura Y (2003) Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. J Biomed Mater Res A 64:177–181

    Article  PubMed  Google Scholar 

  14. Hong JP, Kim YW, Lee SK, Kim SH, Min KH (2008) The effect of continuous release of recombinant human epidermal growth factor (rh-EGF) in chitosan film on full thickness excisional porcine wounds. Ann Plast Surg 61:457–462

    Article  CAS  PubMed  Google Scholar 

  15. Wang W, Lin S, Xiao Y, Huang Y, Tan Y, Cai L, Li X (2008) Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats. Life Sci 82:190–204

    Article  CAS  PubMed  Google Scholar 

  16. Ribeiro MP, Morgado PI, Miguel SP, Coutinho P, Correia IJ (2013) Dextran-based hydrogel containing chitosan nanoparticles loaded with growth factors to be used in wound healing. Mater Sci Eng C 33:2958–2966

    Article  CAS  Google Scholar 

  17. Alemdaroglu C, Deḡim Z, Ḉelebi N, Zor F, Ȍzűrk N, Enkoḡan D (2006) An investigation in burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns 32:319–327

    Article  PubMed  Google Scholar 

  18. Obara K, Ishihara M, Fujita M, Kanatari Y, Hattori H, Matsui T (2005) Acceleration of wound healing in healing-impaired db/db mice with a photocrosslinkable chitosan hydrogels containing fibroblast growth factor-2. Wound Repair Regen 13(4):390–397

    Article  PubMed  Google Scholar 

  19. Tateshida T, Ono I, Kaneko F (2001) Effects of collagen matrix containing transforming growth factor (TGF-β1) on wound contraction. J Dermatol Sci 27:104–113

    Article  Google Scholar 

  20. Xie Z, Paras CB, Wong H, Punnakitikashem P, Su L, Vu K (2013) Dual growth factor –releasing multi-functional nanofibers for wound healing. Acta Biomater 9:9351–9359

    Article  CAS  PubMed  Google Scholar 

  21. Lu Y, Cai S, Shu XZ, Shelby J, Prestwich GD (2007) Release of basic fibroblast growth factor from a crosslinked glycosaminoglycan hydrogel promotes wound healing. Wound Repair Regen 15:245–251

    Article  Google Scholar 

  22. LeGrand EK (1998) Preclinical promise of becaplermin (rhPDGF-BB) in wound healing. Am J Surg 176:48S–54S

    Article  CAS  PubMed  Google Scholar 

  23. Choi JS, Yoo HS (2010) Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties. J Biomed Mater Res A 95:563–573

    Google Scholar 

  24. Matsumoto Y, Kuroyamagi Y (2010) Development of a wound dressing composed of hyaluronic acid sponge containing arginine and epidermal growth factor. J Biomater Sci Polym Ed 21(6–7):715–726

    Article  CAS  PubMed  Google Scholar 

  25. Kondo S, Huroyanagi Y (2012) Development of a wound dressing composed of hyaluronic acid sponge with epidermal growth factor. J Biomater Sci Polym Ed 25:629–643

    Article  Google Scholar 

  26. Yu A, Niyama H, Kondo S, Yamamoto A, Suzuki R, Kuroyamagi Y (2013) Wound dressing composed of hyaluronic acid and collagen containing EGF or bbFGF: comparative culture study. J Biomater Sci Polym Ed 24(8):1015–1026

    Article  CAS  PubMed  Google Scholar 

  27. Choi JS, Leong KW, Yoo HS (2008) In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials 29:586–597

    Google Scholar 

  28. Choi JS, Choi SH, Yoo HS (2011) Coaxial electrospun nanofibers for treatment of diabetic ulcers with binary release of multiple growth factors. J Mater Chem 21(14):5258–5287

    Article  CAS  Google Scholar 

  29. Brown AC, Barker TH (2014) Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater 10:1502–1514

    Article  CAS  PubMed  Google Scholar 

  30. Gil ES, Panilaitis B, Bellas E, Kaplan DL (2013) Functionalized silk biomaterials for wound healing. Adv Healthcare Mater 2:206–217

    Article  CAS  Google Scholar 

  31. Gainza G, Pastor M, Aguirre JJ, Villullas S, Pedraz JL, Hernandez RM (2014) A novel strategy for the treatment of chronic wounds based on the topical administration of rhEGF-loaded lipid nanoparticles: in vitro bioactivity and in vivo effectiveness in healing db/db mice. J Control Release 185:51–61

    Article  CAS  PubMed  Google Scholar 

  32. Gainza G, Bonafonte DC, Moreno B, Aguirre JJ, Gutierez FB, Villullas S (2015) Topical administration of rhEGF-loaded nanostructured lipid carriers (rhEGF-NLC) improves healing in a porcine full-thickness excisional wound model. J Control Release 197:41–47

    Article  CAS  PubMed  Google Scholar 

  33. Chu Y, Yu D, Wang P, Xu J, Li D, Ding M (2010) Nanotechnology promotes the full thickness diabetic wound healing effect of recombinant human growth factor in diabetic rats. Wound Repair Regen 18:499–505

    Article  PubMed  Google Scholar 

  34. Pierre EJ, Perezpolo JR, Mitchell AT, Martin S, Hernfon DN (1997) Insulin-like growth factor-1 liposomal gene transfer and systemic growth hormone stimulate wound healing. J Burn Care Rehabil 18:287–289

    Article  CAS  PubMed  Google Scholar 

  35. Brown GL, Curtsinger LJ, White M, Mitchell RO, Pietsch J, Nordquist R, von Fraunhofer A, Schultz GS (1988) Acceleration of tensile strength of incisions treated with EGF and TGF-beta. Ann Surg 208:788–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tarakanova A, Chang S-W, Buehlet MJ (2014) Computational materials science of bionanomaterials: structure, mechanical properties and applications of elastin and collagen proteins. In: Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (eds) Handbook of nanomaterials properties. Springer, New York, pp 941–962

    Chapter  Google Scholar 

  37. Fujimoto M, Okamoto K, Furuta M (2009) Preparation of alpha-elastin nanoparticles by gamma irradiation. Radiat Phys Chem 78(12):1046–1048

    Article  CAS  Google Scholar 

  38. Norling LV, Spite M, Yang R, Flower RJ, Peretti M, Serhan CN (2011) Cutting edge: humanized nano-prosolving medicines mimic inflammation-resolution and enhance wound-healing. J Immunol 186(10):5543–5547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Glenn KC, Frost GH, Bergmann JS, Carney DH (1988) Synthetic peptides bind to high-affinity thrombin receptors and modulate thrombin mitogenesis. Pept Res 1(2):65–73

    CAS  PubMed  Google Scholar 

  40. Ziv-Polat O, Topaz M, Brosh T, Margel S (2010) Enhancement of incisional wound healing in thrombin conjugated to iron oxide nanoparticles. Biomaterials 31(4):741–747

    Article  CAS  PubMed  Google Scholar 

  41. Mayo AS, Ambati BK, Kompella UB (2010) Gene delivery nanoparticles fabricated by supercritical fluid extraction of emulsions. Int J Pharm 387(1–2):278–285

    Article  CAS  PubMed  Google Scholar 

  42. Masotti A, Ortaggi G (2009) Chitosan micro- and nanoparticles fabrication and applications for drug and DNA delivery. Mini-Rev Med Chem 9(4):463–469

    Article  CAS  PubMed  Google Scholar 

  43. Chellat P, Grandjean-Laquerriere A, Le Naour R (2005) Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles. Biomaterials 26(9):961–970

    Article  CAS  PubMed  Google Scholar 

  44. Yang F, Cho SW, Son SM (2010) Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc Natl Acad Sci U S A 107(8):3317–3322

    Article  CAS  PubMed  Google Scholar 

  45. Cotter PD, Hill C, Ross RP (2005) Bacteriocins developing innate immunity for food. Nat Rev Microbiol 3(10):777–788

    Article  CAS  PubMed  Google Scholar 

  46. Arthur TD, Cavera VL, Chikindas ML (2014) On bacteriocin delivery systems and potential applications. Future Microbiol 9(2):235–248

    Article  CAS  PubMed  Google Scholar 

  47. Leonida MD (2014) Encapsulation in chitosan-based nanoparticles offers advantages for bioactive agents. In: 1st international symposium Nanoparticles Nanomaterials Applications, Caparica, 20–22 Jan

    Google Scholar 

  48. Chopra M, Kaur P, Bernela M, Thakur R (2014) Surfactant assisted nisin loaded chitosan-carageenan nanocapsule synthesis for controlling food pathogens. Food Control 37:158–164

    Article  CAS  Google Scholar 

  49. Heunis T, Bshena O, Klumperman B, Dicks L (2011) Release of bacteriocins from nanofibers prepared with combinations of poly(D, L-lactide) (PDLLA) and poly(ethylene oxide)(PEO). Int J Mol Sci 12(4):2158–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. http://www.wikipedia.org/wiki/Silk#/media/File:Bombyx_mori_Cocon_02.jpg. Accessed 17 Jan 2016

  51. Bai S, Liu S, Zhang C, Xu W, Lu Q, Han H, Kaplan DL, Zhu H (2013) Controllable transition of silk fibroin nanostructures:an insight into in vitro silk self-assembly process. Acta Biomater 9(8):7806–7813

    Article  CAS  PubMed  Google Scholar 

  52. Zhou J, Zhang B, Shi L, Zhong J, Zhu J, Yan J, Wang P, Cao C, He D (2014) Regenerated silk fibroin films with controllable nanostructure size and secondary structure for drug delivery. ACS Appl Mater Interfaces 6(24):21813–21821

    Article  CAS  PubMed  Google Scholar 

  53. Valenta C, Auner BG (2004) The use of polymers for dermal and transdermal delivery. Eur J Pharm Biopharm 58:279–289

    Article  CAS  PubMed  Google Scholar 

  54. Ricci G, Patrizi A, Bendandi B, Menna G, Varotti E, Masi M (2004) Clinical effectiveness of a silk fabric in the treatment of atopic dermatitis. Br J Dermatol 150(1):127–131

    Article  CAS  PubMed  Google Scholar 

  55. Aramwit P, Sangcakul A (2007) The effect of sericin cream on wound healing in rats. Biosci Biotechnol Biochem 71:2473–2477

    Article  CAS  PubMed  Google Scholar 

  56. Aramwit P, Bang N (2014) The characteristics of bacterial nanocellulose releasing silk sericin for facial treatment. BMC Biotechnol 14:104–115

    Article  PubMed  PubMed Central  Google Scholar 

  57. Luo Y, Wang Q (2014) Zein-based micro- and nano-particles for drug and nutrient delivery: a review. J Appl Polym Sci 131:40696. doi:10.1002/app.40696, http://onlinelibrary.wiley.com/

    Google Scholar 

  58. Wang Y, Padua GW (2012) Nanoscale characterization of zein self-assembly. Langmuir 28(5):2429–2435

    Article  CAS  PubMed  Google Scholar 

  59. Lee S, Alwahab NS, Moazzam ZM (2013) Zein-based oral drug delivery system targeting activated macrophages. Int J Pharm 454:388–393

    Article  CAS  PubMed  Google Scholar 

  60. Luo Y, Zhang B, Whent M, Yu LL, Wang Q (2011) Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol and its in vitro controlled release study. Colloids Surf B Biointerfaces 85(2):145–152

    Article  CAS  PubMed  Google Scholar 

  61. Luo Y, Teng Z, Wang TT, Wang Q (2013) Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate. J Agric Food Chem 61(21):7621–7629

    Article  CAS  PubMed  Google Scholar 

  62. Li K-K, Yin S-W, Yang X-Q, Tang C-H, Wei Z-H (2012) Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein-sodium caseinate (SC) nanoparticles. J Agric Food Chem 60:11592–11600

    Article  CAS  PubMed  Google Scholar 

  63. Zhang B, Luo Y, Wang Q (2010) Development of silver-zein composites as a promising antimicrobial agent. Biomacromolecules 11:2366–2375

    Article  CAS  PubMed  Google Scholar 

  64. Pangpookiew P, Wattanathorn J, Muchimapura S, Thukhummee W (2012) Quercetin-loaded zein based nanofiber patch: a novel cognitive enhancer. Int J Pharm Biomed Sci 3(3):103–108

    Google Scholar 

  65. Kayaci F, Uyar T (2012) Electrospun zein nanofibers incorporating cyclodextrin. Carbohydr Polym 90:558–568

    Article  CAS  PubMed  Google Scholar 

  66. Dhandayuthapani B, Varghese SH, Aswathy RG, Yoshida Y, Maekawa T, Sakthikumar D (2012) Evaluation of antithrombogenicity and hydrophilicity on zein-SWCNT electrospun fibrous nanocomposite scaffolds. Int J Biomater. doi:10.1155/2012/345029

    PubMed  PubMed Central  Google Scholar 

  67. Apte M, Girme G, Nair R, Bankar A, Kumar AR, Zinjarde S (2013) Melanin mediated synthesis of gold nanoparticles by Yarrowia lipolytica. Mater Lett 95:140–152

    Article  Google Scholar 

  68. Ninh C, Cramer M, Bettinger CJ (2014) Photoresponsive hydrogel networks using melanin nanoparticle photothermal sensitizers. Biomater Sci 2:766–774

    Article  CAS  PubMed  Google Scholar 

  69. Pezzella A, Capelli L, Constantini A, Luciani G, Tescione F, Silvestri B, Vitiello G, Branda F (2013) Towards the development of a novel bioinspired functional material: synthesis and characterization of hybrid TiO2/DHICA-melanin nanoparticles. Mater Sci Eng C 33:347–355

    Article  CAS  Google Scholar 

  70. Charafeddine R, Makdisi J, Schairer D, O’Rourke BP, Diaz-Valencia JD, Chouake J, Kutner A, Krausz A, Adler B, Nacharaju P, Liang H, Mukherjee S, Friedman JM, Fiedman A, Nosanchuk JD, Sharp DJ (2015) Fidgetin-like 2: a microtubule-based regulator of wound healing. J Invest Dermatol. doi:10.1038/jid.2015.94

    PubMed  PubMed Central  Google Scholar 

  71. Chen M, Zakrewsky M, Gupta V, Anselmo AC, Slee DH, Muraski JA, Mitragotri S (2014) Topical delivery of siRNA into skin using SPACE-peptide carriers. J Control Release 179:33–41

    Article  PubMed  PubMed Central  Google Scholar 

  72. Berard F, Marty J, Nicolas J (2003) Allergen penetration through the skin. Eur J Dermatol 13:324–330

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leonida, M.D., Kumar, I. (2016). Peptide and Protein-Based Nanomaterials in Applications for the Skin. In: Bionanomaterials for Skin Regeneration. SpringerBriefs in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-39168-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39168-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39166-3

  • Online ISBN: 978-3-319-39168-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics