Skip to main content

Bionanomaterials from Plant Sources

  • Chapter
  • First Online:
Bionanomaterials for Skin Regeneration

Part of the book series: SpringerBriefs in Bioengineering ((BRIEFSBIOENG))

  • 979 Accesses

Abstract

At the present an unprecedented interest in herbal healing is appearing everywhere. The Western world started to compare allopathic remedies (with many side effects) to the traditional ones and to acknowledge the latter as safer alternatives. In spite of their advantages, applications are slow to materialize, with poor solubility and low bioavailability being the main reasons. Natural products such as curcumin, hop extracts, essential oils are example of species with demonstrated biological activity but few applications due to unsatisfactory bioavailability correlated with low water solubility. Natural products with strong antioxidant effect, like polyphenols in teas, for example, are not widely used because of their sensitivity to oxidation (during processing and storage).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhawana M, Basniwal RK, Buttar HS, Jain VK, Jain N (2011) Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem 59(5):2056–2061

    Article  CAS  PubMed  Google Scholar 

  2. Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin: biological actions and medical applications. Curr Sci 87(1):44–53

    CAS  Google Scholar 

  3. Aggarwal BB, Kumar A, Aggarwal MS, Shishodia S (2004) Turmeric (Curcuma longa): a spice for all seasons. In: Bagchi D, Preuss HG (eds) Phytopharmaceuticals in cancer prevention. CRC/Taylor & Francis Group, New York, pp 350–379

    Google Scholar 

  4. Aggarwal BB, Surh Y-J, Shishodia S (eds) (2007) The molecular targets and therapeutic uses of curcumin in health and disease. Springer, New York/Heidelberg/Dordrecht/London, pp 1–492

    Google Scholar 

  5. Schulz O (2008) The biological activity of curcumin. Wellness Food Europe, June/July, pp 10–14

    Google Scholar 

  6. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78(18):2081–2087

    Article  CAS  PubMed  Google Scholar 

  7. Rivera-Espinoza Y, Muriel P (2009) Pharmacological actions of curcumin in liver diseases or damage. Liver Int 29(10):1457–1466

    Article  CAS  PubMed  Google Scholar 

  8. Aggarwal BB, Sung B (2009) Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 30:85–94

    Article  CAS  PubMed  Google Scholar 

  9. Shin GH, Chung SK, Kim JT, Joung HJ, Park HJ (2013) Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using ethanol injection method. J Agric Food Chem 61:11119–11126

    Article  CAS  PubMed  Google Scholar 

  10. Cartiera MS, Ferreira EC, Caputo C, Egan ME, Caplan MJ, Saltzman WM (2010) Partial correction of cystic fibrosis defects with PLGA nanoparticles encapsulating curcumin. Mol Pharm 7(1):86–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. El-Sherbiny IM, Smyth HDC (2012) Controlled release pulmonary administration of curcumin using swellable biocompatible microparticles. Mol Pharm 9:269–280

    Article  CAS  PubMed  Google Scholar 

  12. Sneharani AH, Karakkat JV, Singh SA, Rao AGA (2010) Interaction of curcumin with β-lactoglobulin – stability, spectroscopic analysis, and molecular modeling of the complex. J Agric Food Chem 58:11130–11139

    Article  CAS  PubMed  Google Scholar 

  13. Heo DN, Ko W-K, Moon H-J, Kim H-J, Lee SJ, Lee JB, Bae MS, Yi J-K, Hwang Y-S, Bang JB, Kim E-C, Do SH, Kwon IK (2014) Inhibition of osteoclast differentiation by gold nanoparticles functionalized with cyclodextrin curcumin complexes. ACS Nano 8(12):12049–12062

    Article  CAS  PubMed  Google Scholar 

  14. Gűlseren I, Guri A, Corredig M (2012) Encapsulation of tea polyphenols in nanoliposomes prepared with milk phospholipids and their effect on the viability of HT-29 human carcinoma cells. Food Dig 3:36–45

    Article  Google Scholar 

  15. Gűlseren I, Corredig M (2013) Storage stability and physical characteristics of tea polyphenols bearing nanoliposomes prepared with milk fat globule membrane phospholipids. J Agric Food Chem 61:3242–3251

    Article  PubMed  Google Scholar 

  16. Lu Q, Li D-C, Jiang J-G (2011) Preparation of a tea polyphenol nanoliposomes system and its physico-chemical properties. J Agric Food Chem 59:13004–13011

    Article  CAS  PubMed  Google Scholar 

  17. Ma QH, Kuang YZ, Hao XZ, Gu N (2009) Preparation and characterization of tea polyphenols and vitamin E loaded nanoscale complex liposomes. J Nanosci Nanotechnol 9:1379–1383

    Article  CAS  PubMed  Google Scholar 

  18. Zou L-Q, Liu W, Liu W-L, Liang R-H, Li T, Liu C-M, Cao Y-L, Niu J (2014) Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization. J Agric Food Chem 62:934–941

    Article  CAS  PubMed  Google Scholar 

  19. Liang J, Li F, Fang Y, Yang W, An X, Zhao L (2011) Synthesis, characterization and cytotoxicity studies of chitosan-coated polyphenol nanoparticles. Colloids Surf B Biointerfaces 82:297–301

    Article  CAS  PubMed  Google Scholar 

  20. Lee J-S, Kim G-H, Lee HG (2010) Characterization and antioxidant activity of Elsholtzia splendens extract-loaded nanoparticles. J Agric Food Chem 58(6):3316–3321

    Article  CAS  PubMed  Google Scholar 

  21. Madureira AR, Pereira A, Pintado M (2015) Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Carbohydr Polym 130:429–439

    Article  CAS  PubMed  Google Scholar 

  22. Hu B, Ting Y, Yang X, Tang W, Zheng X, Huang Q (2012) Nanochemoprevention by encapsulation of (−)-epigallocatechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of bioavailability. Chem Commun 48(18):2421–2423

    Article  CAS  Google Scholar 

  23. Keawchaoon L, Yoksan R (2011) Preparation, characterization and in vitro release study of cavacrol chitosan nanoparticles. Colloids Surf B Biointerfaces 84(1):163–171

    Article  CAS  PubMed  Google Scholar 

  24. Rota C, Carraminana J, Burillo J, Herrera A (2004) In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens. J Food Prot 67(6):1252–1256

    CAS  PubMed  Google Scholar 

  25. Andreu V, Mendoza G, Arruebo M, Irusta S (2015) Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials 8:5154–5193

    Article  Google Scholar 

  26. Khajavi R, Abbasipour M, Barzi MG, Rashidi A, Rahimi MK, Mirzababa HH (2014) Eucalyptus essential oil-doped alginate fibers as a potent antibacterial wound dressing. Adv Polym Technol 33. doi:10.1002/adv.21408. http://onlinelibrary.wiley.com. Accessed 8 Nov 2015

    Google Scholar 

  27. Liakos I, Rizzello L, Scurr DJ, Pompa PP, Bayer IS, Athanassiou A (2014) All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int J Pharm 463:137–145

    Article  CAS  PubMed  Google Scholar 

  28. Kavoosi G, Nateghpoor B, Dadfar SMM, Dadfar SMA (2014) Antioxidant, antifungal, water binding, and mechanical properties of poly(vinyl alcohol) film incorporated with essential oil as a potential wound dressing material. J Appl Polym Sci 131. doi:10.1002/app.40937. http://onlinelibrary.wiley.com. Accessed 8 Nov 2015

    Google Scholar 

  29. Dias AMA, Braga MEM, Seabra IJ, Ferreira P, Gil MH, de Sousa HC (2011) Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. Int J Pharm 408:9–19

    Article  CAS  PubMed  Google Scholar 

  30. Kayaci F, Sen HS, Durgun E, Uyar T (2014) Functional electrospun polymeric nanofibers incorporating geraniol-cyclodextrin inclusion complexes: high thermal stability and enhanced durability of geraniol. Food Res Int 62:424–431

    Article  CAS  Google Scholar 

  31. Arnaud CH (2014) More than just sugars. C&EN, pp 10–13, 14 April

    Google Scholar 

  32. Haiza H, Azizan A, Mohidin AH, Halin DSC (2013) Green synthesis of silver nanoparticles using local honey. Nano Hybrids 4:87–98

    Article  Google Scholar 

  33. Licensed under public domain [revised by Kolbasz JJ, 6 May 2016]. https://en.wikipedia.org/w/index.php?title=Carrageenan&oldid=718929972. Accessed 1 Jun 2016

  34. Varghese JS, Chellappa N, Fathima NN (2014) Gelatin-carrageenan hydrogels. Role of pore size distribution on drug delivery process. Colloids Surf B Biointerfaces 113:346–351

    Article  CAS  PubMed  Google Scholar 

  35. Liu J, Zhan X, Wan J, Wang Y, Wang C (2015) Review for carrageenan-based pharmaceutical biomaterials:favorable physical features versus adverse biological effects. Carbohydr Polym 121:27–36

    Article  CAS  PubMed  Google Scholar 

  36. Daniel-da-Silva AL, Ferreira L, Gil AM, Trindade T (2011) Synthesis and swelling behavior of temperature-responsive kappa-carrageenan nanogels. J Colloid Interface Sci 355(2):512–517

    Article  CAS  PubMed  Google Scholar 

  37. Leong KH, Chung LY, Noordin MI, Onuki Y, Morishita M, Takayama K (2011) Lectin-functionalized carboxymethylated kappa-carrageenan microparticles for oral insulin delivery. Carbohydr Polym 86(2):555–565

    Article  CAS  Google Scholar 

  38. Sagbas S, Butun S, Sahiner N (2012) Modifiable chemically-crosslinked poly(k-carrageenan)particles. Carbohydr Polym 87(4):2718–2724

    Article  CAS  Google Scholar 

  39. Dai WG, Dong IC, Song YQ (2007) Nanosizing of a drug/carrageenan complex to increase solubility and dissolution rate. Int J Pharm 34(1–2):201–207

    Article  Google Scholar 

  40. Mihaila SM, Gaharwar AK, Reis RL, Marques AP, Gomes ME, Khademhoseini A (2013) Photocrosslinkable kappa-carrageenan hydrogels for tissue engineering applications. Adv Healthcare Mater 2(6):895–907

    Article  CAS  Google Scholar 

  41. Yamaguchi N, Satoh-Yamaguchi K, Ono M (2009) In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine 16:369–376

    Article  CAS  PubMed  Google Scholar 

  42. Leonida MD, Benzecry A, Suria A, De Leon A, Tambosi R (2013) Composite biomaterials active against opportunistic pathogens. In: Annual meeting of the society of biomaterials, Boston, 10–13 April

    Google Scholar 

  43. Leonida MD, Banjade S, Vo T, Anderle G, Haas GJ, Philips N (2011) Nanocomposite materials with antimicrobial activity based on chitosan. Int J Nano Biomater 3(4):316–334

    Article  CAS  Google Scholar 

  44. Dissaya Pornpattananangkul D, Fu V, Thamphiwatana S, Zhang L, Chen M, Vecchio J, Gao W, Huang CM, Zhang L (2013) In vivo treatment of propionibacterium acnes infection with liposomal lauric acids. Adv Heathcare Mat 2(10):1322–1328, http://jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=932. Accessed 6 Jan 2016

    Google Scholar 

  45. Pardeike J, Hommoss A, Műller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366:170–184

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leonida, M.D., Kumar, I. (2016). Bionanomaterials from Plant Sources. In: Bionanomaterials for Skin Regeneration. SpringerBriefs in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-39168-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39168-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39166-3

  • Online ISBN: 978-3-319-39168-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics