Skip to main content

Nanocellulose

  • Chapter
  • First Online:
Bionanomaterials for Skin Regeneration

Part of the book series: SpringerBriefs in Bioengineering ((BRIEFSBIOENG))

  • 1069 Accesses

Abstract

Cellulose is a biopolymer (β-(1-4)-D-glucopyranose), the main structural element in plants and bacterial wall. It is the most abundant natural polymer on Earth, its production estimated at 7.5 × 1010 metric tons annually. It is insoluble in water and contains both crystalline and amorphous regions. Its amphiphilic character, arising from the presence and arrangement of the numerous −OH groups (H-bonds, hydrophobic interactions, dispersion forces), determines the properties and behavior of cellulose in aqueous environment [1]. Most cellulose available consists of wood fibers and components of cell walls. Nanocelluloses, composed of nanoscaled structures based on cellulose, are more and more given attention as novel promising nanomaterials. Their physical properties, high surface area, and biological properties (biocompatibility, low toxicity, biodegradability) made them important for biomedical applications in treating skin diseases and in skin care. Very few organisms can synthesize directly nanosized cellulose fibers. Some of those are blue-green algae and bacteria such as Acetobacter xylinum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physico-chemical aspects and role of hydrophobic interactions. Cellulose 19:581–587

    Article  CAS  Google Scholar 

  2. Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206

    Article  CAS  Google Scholar 

  3. Eichorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315

    Article  Google Scholar 

  4. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  5. American Chemical Society (2013) Engineering algae to make the “wonder material” nanocellulose for biofuels and more. http://www.eurekalert.org/pub_releases/2013-04/acs-eat031813.php. Accessed 1 Dec 2015

  6. Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures-their surface properties and interaction with water. Langmuir 25(13):7675–7685

    Article  CAS  PubMed  Google Scholar 

  7. Menchaca-Nal S, Londono-Calderon C, Cerrutti P, Foresti ML, Pampillo L, Bilovol V, Candal R, Martinez-Garcia R (2015) Facile synthesis of cobalt ferrite nanotubes using bacterial nanocellulose as template. Carbohydr Polym. doi:10.1016/j.carbpol.2015.10.068. Accessed 1 Dec 2015

    Google Scholar 

  8. Lee K-Y, Buldum G, Mantalaris A, Bismark A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32

    Article  CAS  PubMed  Google Scholar 

  9. Thielemans W, Warbey CA, Walsh DA (2009) Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chem 11(4):531–537

    Article  CAS  Google Scholar 

  10. Labet M, Thielemans W (2011) Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of e-caprolactone as a case study. Cellulose 18(3):607–617

    Article  CAS  Google Scholar 

  11. Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393

    Article  CAS  PubMed  Google Scholar 

  12. Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442

    Article  CAS  PubMed  Google Scholar 

  13. Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76:431–438

    Article  PubMed  Google Scholar 

  14. Andrade FK, Silva JP, Carvalho M, Castanheira EMS, Soares R (2011) Gama studies on the hemocompatibility of bacterial cellulose. J Biomed Mater Res A 98:554–566

    Article  PubMed  Google Scholar 

  15. Ferraz N, Carlsson DO, Hong J, Larsson R, Fellström B, Nyholm L (2012) Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification. J R Soc Interface 9:1943–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leitao AF, Gupta S, Silva JP, Reviakine I, Gama M (2013) Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite. Colloids Surf B Biointerfaces 111:493–502

    Article  CAS  PubMed  Google Scholar 

  17. Kümmerer K, Menz J, Schubert T, Thielemans W (2011) Biodegradability of organic nanoparticles in the aqueous environment. Chemosphere 82:1387–1392

    Article  PubMed  Google Scholar 

  18. Li J, Wan YZ, Li LF, Liang H, Wang JH (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29:1635–1642

    Article  CAS  Google Scholar 

  19. Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci. http://onlinelibrary.wiley.com/doi/10.1002/app.41719. Accessed 28 Jan 2016

  20. Portal O, Clark WA, Levinson DJ (2009) Microbial cellulose wound dressing in the treatment of nonhealing lower extremity ulcers. Wounds 21:1–3

    PubMed  Google Scholar 

  21. Czaja W, Krystynowicz A, Kawecki M, Wysota K, Sakiel S, Wróblewski P (2007) Biomedical applications of microbial cellulose in burn wound recovery. In: Brow RM Jr, Saxena IM (eds) Cellulose: molecular and structural biology. Springer, New York/Heidelberg/Dordrecht/London, pp 307–321

    Chapter  Google Scholar 

  22. Brown Jr RM, Czaja W, Jeschke M, Young DJ (2006) Multiribbon nanocellulose as a matrix for wound healing. US Patent 0053960 A1, filed 31 Aug 2006, issued 8 Mar 2007

    Google Scholar 

  23. Cai ZJ, Yang G (2011) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 120:2938–2944

    Article  CAS  Google Scholar 

  24. Cai Z, Kim J (2010) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91

    Article  CAS  Google Scholar 

  25. Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C 34:54–61

    Article  CAS  Google Scholar 

  26. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611

    Article  CAS  PubMed  Google Scholar 

  27. Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128

    Article  CAS  Google Scholar 

  28. Lin N, Bruzzese C, Dufresne A (2012) TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl Mater Interfaces 4:4948–4959

    Article  CAS  PubMed  Google Scholar 

  29. Svagan AJ, Azizi Samir MAS, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native nanofibrils. Adv Mater 20(7):1263–1269

    Article  CAS  Google Scholar 

  30. Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12(8):1448–1453

    Article  CAS  Google Scholar 

  31. Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically templates for functionalities. Soft Matter 4(12):2492–2499

    Article  Google Scholar 

  32. Moritz S, Wiegand C, Wesarg F, Hessler N, Műller FA, Kralisch D, Hipler U-C, Fischer D (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int J Pharm 471:45–55

    Article  CAS  PubMed  Google Scholar 

  33. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  34. Xiong R, Lu C, Zhang W, Zhou Z, Zhang X (2013) Facile synthesis of tunable silver nanostructures for antibacterial application using cellulose nanocrystals. Carbohydr Polym 95:214–219

    Article  CAS  PubMed  Google Scholar 

  35. Auras R, Lim L-T, Selke SEM, Tsuji H (eds) (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. http://onlinelibrary.wiley. doi:10.1002/9780470649848

    Google Scholar 

  36. Yu H-Y, Qin Z-Y, Sun B, Yan CF, Yao J-M (2014) One-pot green fabrication and antibacterial activity of thermally stable corn-like CNC/Ag nanocomposites. J Nanopart Res 16:2202–2213

    Article  Google Scholar 

  37. Liu H, Song J, Shang S, Song Z, Wang D (2012) Cellulose nanocrystal/silver nanoparticle composites as bifunctional nanofillers within waterborne polyurethane. ACS Appl Mater Interfaces 4:2413–2419

    Article  CAS  PubMed  Google Scholar 

  38. Martins NCT, Freire CSR, Pinto RJB, Fernandes SCM, Neto CP, Silvestre AJD (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19:1425–1436

    Article  CAS  Google Scholar 

  39. Díez I, Eronen P, Österberg M, Linder MB, Ikkala O, Ras RHA (2011) Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. Macromol Biosci 11:1185–1191

    Article  PubMed  Google Scholar 

  40. Berndt S, Wesarg F, Wiegand C, Kralisch D, Müller FA (2013) Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles. Cellulose 20:771–783

    Article  CAS  Google Scholar 

  41. Olszewska K (2013) Hydrogel adhesive bandage for chronic wounds. http://www.nauka.gov.pl/en/polish-science-news/hydrogel-adhesive-bandage-for-chronic-wounds.html. Accessed 16 Oct 2015

  42. Azizi S, Ahmad M, Mahdavi M, Abdolmohammadi S (2013) Preparation, characterization, and antimicrobial activities of ZnO nanoparticles/cellulose nanocrystal nanocomposites. BioResources 8:1841–1851

    Article  Google Scholar 

  43. Martins NCT, Freire CSR, Neto CP, Silvestre AJD, Causio J, Baldi G, Sadocco P, Trindade T (2013) Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids Surf A Physicochem Eng Asp 417:111–119

    Article  CAS  Google Scholar 

  44. Ul-Islam M, Khattak WA, Ullah MW, Khan S, Park JK (2014) Synthesis of regenerated bacterial cellulose–zinc oxide nanocomposite films for biomedical applications. Cellulose 21:433–447

    Article  CAS  Google Scholar 

  45. Andresen M, Stenstad P, Møretrø T, Langsrud S, Syverud K, Johansson L-S, Stenius P (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8:2149–2155

    Article  CAS  PubMed  Google Scholar 

  46. Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538

    Article  CAS  Google Scholar 

  47. Liu K, Lin X, Chen L, Huang L, Cao S, Wang H (2013) Preparation of microfibrillated cellulose/chitosan–benzalkonium chloride biocomposite for enhancing antibacterium and strength of sodium alginate films. J Agric Food Chem 61:6562–6567

    Article  CAS  PubMed  Google Scholar 

  48. Liu K, Lin X, Chen L, Huang L, Cao S (2014) Dual-functional chitosan– methylisothiazolinone/microfibrillated cellulose biocomposites for enhancing antibacterial and mechanical properties of agar films. Cellulose 21:519–528

    Article  CAS  Google Scholar 

  49. Gao C, Yan T, Du J, He F, Luo H, Wan Y (2014) Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via immobilizing ε-polylysine nanocoatings. Food Hydrocolloids 36:204–211

    Article  CAS  Google Scholar 

  50. Jipa IM, Stoica-Guzun A, Stroescu M (2012) Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. Food Sci Technol 47:400–406

    CAS  Google Scholar 

  51. Rouabhia M, Asselin J, Tazi N, Messaddeq Y, Levinson D, Zhang Z (2014) Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl Mater Interfaces 6:1439–1446

    Article  CAS  PubMed  Google Scholar 

  52. Carpenter BL, Feese E, Sadeghifar H, Argyropoulos DS, Ghiladi RA (2012) Porphyrin-cellulose nanocrystals: a photobactericidal material that exhibits broad spectrum antimicrobial activity. J Photochem Photobiol 88:527–536

    Article  CAS  PubMed  Google Scholar 

  53. Chinga-Carrasco G, Syverud K (2014) Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels. J Biomater Appl 29(3):423–432

    Article  PubMed  PubMed Central  Google Scholar 

  54. Roemhild K, Wiegand C, Hipler U-C, Heinze T (2013) Novel bioactive amino-functionalized cellulose nanofibers. Macromol Rapid Commun 34:1767–1771

    Article  CAS  PubMed  Google Scholar 

  55. Fernandes SCM, Sadocco P, Alonso-Varona A, Palomares T, Eceiza A, Silvestre AJD, Mondragon I, Freire CS (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297

    Article  CAS  PubMed  Google Scholar 

  56. Butchosa N, Brown C, Larsson PT, Berglund LA, Bulone V, Zhou Q (2013) Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chem 15:3404–3413

    Article  CAS  Google Scholar 

  57. Ul-Islam M, Khan T, Khattak WA, Park JK (2013) Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 20:589–596

    Article  CAS  Google Scholar 

  58. Li H, Peng L (2015) Antibacterial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates. Carbohydr Polym 124:35–42

    Article  CAS  PubMed  Google Scholar 

  59. Xhanari K, Syverud K, Stenius P (2011) Emulsions stabilized by microfibrillated cellulose: the effect of hydrophobization, concentration and o/w ratio. J Dispers Sci Technol 32(3):447–452

    Article  CAS  Google Scholar 

  60. Aramwit P, Bang N (2014) The characteristics of bacterial nanocellulose releasing silk sericin for facial treatment. BMC Biotechnol 14:104–115

    Article  PubMed  PubMed Central  Google Scholar 

  61. Aramwit P, Kanokpanont S, Nakpheng T, Srichana T (2010) The effect of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci 11:2200–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leonida, M.D., Kumar, I. (2016). Nanocellulose. In: Bionanomaterials for Skin Regeneration. SpringerBriefs in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-39168-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39168-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39166-3

  • Online ISBN: 978-3-319-39168-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics