Skip to main content

Newer Drugs for Sedation: Soft Pharmacology

  • Chapter
  • First Online:
Book cover Out of Operating Room Anesthesia

Abstract

Drugs traditionally used for sedation and anaesthesia, such as benzodiazepines, clonidine, etomidate and propofol have each some of the features of the ideal sedative for the out-of-operating room (OR) environment. However the search for the ideal sedative in this environment continues and has resulted in the development of newer agents for sedation. There is a growing interest in ‘soft pharmacology’. ‘Soft drugs’ is a term used to describe agents, often analogs of a parent compound, with a chemical configuration designed to allow rapid metabolism into inactive metabolites after exerting their desired therapeutic effect (s). ‘Soft’ sedative drugs, such as remimazolam, dexmedetomidine, etomidate analogs and fospropofol may approach the ideal out-of-OR sedative, as they can potentially offer well-controlled titratable activity and ultrashort action. The salient features of these drugs are discussed in this chapter (Table 31.1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Johnson KB. New horizons in sedative hypnotic drug development: fast, clean, and soft. Anesth Analg. 2012;115(2):220–2.

    CAS  PubMed  Google Scholar 

  2. Sear JW, Brown WE. Research into new drugs in anesthesia: then and now. Anesth Analg. 2012;115(2):233–4.

    Google Scholar 

  3. Buchwald P, Bodor N. Recent advances in the design and development of soft drugs. Pharmazie. 2014;69:403–13.

    CAS  PubMed  Google Scholar 

  4. Midazolam hydrochloride injective FDA approved labeling by Baxter Healthcare Corporation dated April 2010. Available at: http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=373fc1d0-9bd2-414b-8798-7bf04526a12e. Accessed 16 Sept 2015.

  5. Nordt SP, Clark RF. Midazolam: a review of therapeutic uses and toxicity. J Emerg Med. 1997;15:357–65.

    CAS  PubMed  Google Scholar 

  6. Kilpatrick GJ, McIntyre MS, et al. CNS 7056: a novel ultra-short-acting Benzodiazepine. Anesthesiology. 2007;107:60–6.

    CAS  PubMed  Google Scholar 

  7. Sneyd R. Remimazolam: new beginnings or just a me-too? Anesth Analg. 2012;115(2):217–9.

    CAS  PubMed  Google Scholar 

  8. Wiltshire HR, Kilpatrick GJ, et al. A placebo and midazolam-controlled phase I single ascending dose study evaluating the safety, pharmacokinetics, and pharmacodynamics of remimazolam (CNS 7056). Part II: populating pharmacokinetic and pharmacodynamic modeling and simulation. Anesth Analg. 2012;115:284–96.

    CAS  PubMed  Google Scholar 

  9. Antonik LJ, Goldwater R, et al. A placebo and midazolam-controlled phase I single ascending-dose study evaluating the safety, pharmacokinetics, and pharmacodynamics of remimazolam (CNS 7056): part I. Safety, efficacy and basic pharmacokinetics. Anesth Analg. 2012;115:274–83.

    CAS  PubMed  Google Scholar 

  10. Borkett KM, Riff DS, et al. A phase II, randomized, double-blind study of remimazolam (CNS 7056) versus midazolam for sedation in upper gastrointestinal endoscopy. Anesth Analg. 2015;120(4):771–80.

    CAS  PubMed  Google Scholar 

  11. Goudra BG, Singh PM. Remimazolam: the future of its sedative potential. Saudi J Anaesth. 2014;8(3):388–91.

    PubMed  PubMed Central  Google Scholar 

  12. A phase III of remimazolam in patients undergoing colonoscopy

    Google Scholar 

  13. Gertler R, Brown HC, et al. Dexmedetomidine: a novel sedative-analgesic agent. Proc (Bayl Univ Med Cent). 2001;14(1):13–21.

    CAS  PubMed  Google Scholar 

  14. Hunter JC, Fontana DJ, et al. Assessment of the role of alpha 2-adrenoceptor subtypes in the antinociceptive, sedative andhypothermic action of dexmedetomidine in transgenic mice. Br J Pharmacol. 1997;122:1339–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Birnbaumer L, Abramowitz J, et al. Receptor-effect or coupling by G proteins. Biochim Biophys Acta. 1990;1031:163–224.

    CAS  PubMed  Google Scholar 

  16. Bhana N, Goa KL, et al. Dexmedetomidine. Drugs. 2000;59:263–8.

    CAS  PubMed  Google Scholar 

  17. Pandharipande P, Ely EW, et al. Dexmedetomidine for sedation and perioperative management of critically ill patients. Semin Anesth Perioper Med Pain. 2006;25:43–50.

    CAS  Google Scholar 

  18. Taittonen MT, Kirvela OA, et al. Effect of clonidine and dexmedetomidine premedication on perioperative oxygen consumption and haemodynamic state. Br J Anaesth. 1997;78:400–6.

    CAS  PubMed  Google Scholar 

  19. Aho M, Lehtinen AM, et al. The effect of intravenously administered dexmedetomidine on perioperative hemodynamics and isoflurane requirements in patients undergoing abdominal hysterectomy. Anesthesiology. 1991;74:997–1002.

    CAS  PubMed  Google Scholar 

  20. Fragen RJ, Fitzgerald PC. Effect of dexmedetomidine on the minimum alveolar concentration (MAC) of sevoflurane in adults age 55 to 70 years. J Clin Anesth. 1999;11:466–70.

    CAS  PubMed  Google Scholar 

  21. Belleville JP, Ward DS, et al. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology. 1992;77:1125–33.

    CAS  PubMed  Google Scholar 

  22. Turkmen A, Alten A, et al. The correlation between the Richmond agitation-sedation scale and bispectral index during dexmedetomidine sedation. Eur J Anaesthesiol. 2006;23:300–4.

    CAS  PubMed  Google Scholar 

  23. Scheinin B, Lindgren L, et al. Dexmedetomidine attenuates sympathoadrenal responses to tracheal intubation and reduces the need for thiopentone and perioperative fentanyl. Br J Anaesth. 1992;68:126–31.

    CAS  PubMed  Google Scholar 

  24. Aho MS, Erkola OA, et al. Effect of intravenously administered dexmedetomidine on pain after laparoscopic tubal ligation. Anesth Analg. 1991;73:112–8.

    CAS  PubMed  Google Scholar 

  25. Venn RM, Bradshaw CJ, et al. Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit. Anaesthesia. 1999;54:1136–42.

    CAS  PubMed  Google Scholar 

  26. Jakob SM, Ruokonen E, et al. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation. JAMA. 2012;307(11):1151–60.

    CAS  PubMed  Google Scholar 

  27. Dexmedetamodine prescribing information. http://www.drugs.com/pro/precedex.html. Accessed 4 Dec 2015.

  28. De Wolf AM, Fragen RJ, et al. The pharmacokinetics of dexmedetomidine in volunteers with severe renal impairment. Anesth Analg. 2001;93:1205–9.

    PubMed  Google Scholar 

  29. Venn RM, Karol MD, et al. Pharmacokinetics of dexmedetomidine infusions for sedation of postoperative patients requiring intensive care. Br J Anaesth. 2002;88:669–75.

    CAS  PubMed  Google Scholar 

  30. Bloor BC, Ward DS, et al. Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology. 1992;77:1134–42.

    CAS  PubMed  Google Scholar 

  31. Xu H, Aibiki M, et al. Effects of dexmedetomidine, an alpha 2-adrenoceptor agonist, on renal sympathetic nerve activity, blood pressure, heart rate and central venous pressure in urethane-anesthetized rabbits. J Auton Nerv Syst. 1998;71:48–54.

    CAS  PubMed  Google Scholar 

  32. de Ruiter G, Popescu DT, et al. Pharmacokinetics of etomidate in surgical patients. Arch Int Pharmacodyn Ther. 1981;249:180–8.

    PubMed  Google Scholar 

  33. Gooding JM, Corssen G. Effect of etomidate on the cardiovascular system. Anesth Analg. 1977;56:717–9.

    CAS  PubMed  Google Scholar 

  34. Lundy JB, Slane ML, et al. Acute adrenal insufficiency after a single dose of etomidate. J Intensive Care Med. 2007;22:111–7.

    PubMed  Google Scholar 

  35. Wagner RL, White PF. Etomidate inhibits adrenocortical function in surgical patients. Anesthesiology. 1984;61:647–51.

    CAS  PubMed  Google Scholar 

  36. Wagner RL, White PF, et al. Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N Engl J Med. 1984;310:1415–21.

    CAS  PubMed  Google Scholar 

  37. Cotten JF, Husain SS, et al. Methoxycarbonyl-etomidate: a novel rapidly metabolized and ultra-short-acting etomidate analogue that does not produce prolonged adrenocortical suppression. Anesthesiology. 2009;111:240–9.

    CAS  PubMed  Google Scholar 

  38. Cotton JF, Le Ge R, et al. Closed-loop continuous infusions of etomidate and etomidate analogs in rats: a comparitive study of dosing and the impact on adrenocortical function. Anesthesiology. 2011;115:764–73.

    Google Scholar 

  39. Le Ge R, Pejo E, et al. Pharmacological studies of methoxycarbonyl etomidate’s carboxylic acid metabolite. Anesth Anal. 2012;115(2):305–8.

    CAS  Google Scholar 

  40. Pejo E, Cotton JF, et al. In vivo and in vitro pharmacological studies of methoxycarbanyl-carboetomidate. Anesth Analg. 2012;115:297–304.

    CAS  PubMed  Google Scholar 

  41. Cotten JF, Forman SA, et al. Carboetomidate: a pyrrole analog of etomidate designed not to suppress adrenocortical function. Anesthesiology. 2010;112:637–44.

    CAS  PubMed  Google Scholar 

  42. Kay B, Rolly G. I.C.I. 35868, a new intravenous induction agent. Acta Anaesthesiol Belg. 1977;28:303–16.

    CAS  PubMed  Google Scholar 

  43. Chen S, Rex D. Registered neurse-administered propofol sedation for endoscopy. Aliment Pharmacol Ther. 2004;19:147–55.

    CAS  PubMed  Google Scholar 

  44. Bachmann-Mennanga B, Ohlmer A, et al. Incidence of pain after intravenous injection of a medium-/long-chain triglyceride emulsion of propofol. An observational study in 1375 patients. Arzneimittelforschung. 2003;53:621–6.

    Google Scholar 

  45. Fischer MJ, Leffler A, et al. The general anesthetic propofol excites nociceptors by activating TRPV1 and TRPA1 rather than GABAA receptors. J Biol Chem. 2010;285:34781–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Abdelmalak B, Khanna A, et al. Fospropofol, a new sedative anesthetic, and its utility in the perioperative period. Curr Pharm Des. 2012;18:6241–52.

    CAS  PubMed  Google Scholar 

  47. Lusedra US Prescribing Information. http://medlibrary.org/lib/rx/meds/lusedra/. Accessed 8 Nov 2015

  48. Sneyd JR, Rigby-Jones AE. New drugs and technologies, intravenous anaesthesia is on the move (again). Br J Anaesth. 2010;105:246–54.

    CAS  PubMed  Google Scholar 

  49. Welliver M, Rugari SM. New drug, fospropofol disodium: a propofol prodrug. AANA J. 2009;77(4):301–8.

    PubMed  Google Scholar 

  50. Dhareshwar SS, Stella VJ. Your prodrug releases formaldehyde: should you be concerned? No! J Pharm Sci. 2008;97:4184–93.

    CAS  PubMed  Google Scholar 

  51. Mueller SW, Moore GD, et al. Fospropofol disodium for procedural sedation: emerging evidence of its value? Clin Med Insights Ther. 2010;2:513–22.

    Google Scholar 

  52. Levitzky B, Varge J. Fospropofol disodium injection for the sedation of patients undergoing colonoscopy. Ther Clin Risk Manag. 2008;4:733–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Schywalsky M, Ihmsen H, et al. Pharmacokinetics and pharmacodynamics of the new propofol prodrug GPI 15715 in rats. Eur J Anaesthesiol. 2003;20(3):182–90.

    CAS  PubMed  Google Scholar 

  54. Rex DK, Cohen LB, Kline JK, et al. Fospropofol disodium for minimal-to-moderate sedation during colonoscopy produces clear-headed recovery: results of a phase 3, randomized, double-blind trial. Gastrointest Endosc. 2007;65:AB367.

    Google Scholar 

  55. Pruitt RE, Cohen LB, et al. A randomized open-label, multicenter, dose-ranging study of sedation with Aquavan injection (GPI 15715) during colonoscopy. Gastrointest Endosc. 2005;61:AB111.

    Google Scholar 

  56. Silvestri GA, Vincent BD, et al. A phase 3, randomized, double-blind study to assess the efficacy and safety of fospropofol disodium injection for moderate sedation in patients undergoing flexible bronchoscopy. Chest. 2009;135:41–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janette Brohan MB, BCh, BAO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brohan, J., Lee, P.J. (2017). Newer Drugs for Sedation: Soft Pharmacology. In: Goudra, B.G., Singh, P.M. (eds) Out of Operating Room Anesthesia. Springer, Cham. https://doi.org/10.1007/978-3-319-39150-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39150-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39148-9

  • Online ISBN: 978-3-319-39150-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics