The Function and Diagnostic Potential of Adipocyte-Derived Factors in the Tumor Microenvironment



Solid tumors resemble dysfunctional “organs” comprised of malignant cancer cells and heterogeneous components of the tumor microenvironment (TME). The TME includes extracellular matrix and non-cancer stromal cells (e.g., fibroblasts, immune cells, and vascular cells) that may support cancer progression. Adipocytes, despite being the most abundant cell type in certain tumor types (e.g., breast cancer), are often overlooked in the TME. It is now well established that the TME plays an important role in tumor growth and metastasis, and while multiple studies have contributed to our understanding of the TME, relatively little is known about how adipocytes, despite their role as major sources of paracrine and endocrine factors, influence tumor progression. In this chapter, we will briefly introduce the TME and its various components and then provide a comprehensive analysis of the roles of tumor-associated adipocytes and adipokines during solid tumor development. We will also highlight the potential diagnostic/prognostic value of adipose tissue and adipose-derived factors in cancer.


Tumor microenvironment Adipocytes Adipose tissue-derived factors Adipokines Obesity Metastasis Inflammation Tissue injury Adipocyte lineage tracing Angiogenesis 


  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. doi: 10.3322/caac.21254.PubMedCrossRefGoogle Scholar
  2. 2.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi: 10.3322/caac.21262.PubMedCrossRefGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi: 10.1016/j.cell.2011.02.013.PubMedCrossRefGoogle Scholar
  4. 4.
    Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 2010;18(6):884–901. doi: 10.1016/j.devcel.2010.05.012.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401. doi: 10.1038/nrc1877.PubMedCrossRefGoogle Scholar
  6. 6.
    Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci. 2010;15:166–79.CrossRefGoogle Scholar
  7. 7.
    Disis ML. Immune regulation of cancer. J Clin Oncol. 2010;28(29):4531–8. doi: 10.1200/JCO.2009.27.2146.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Roorda BD, ter Elst A, Kamps WA, de Bont ESJM. Bone marrow-derived cells and tumor growth: contribution of bone marrow-derived cells to tumor micro-environments with special focus on mesenchymal stem cells. Crit Rev Oncol/Hematol. 2009;69(3):187–98. doi: 10.1016/j.critrevonc.2008.06.004.CrossRefGoogle Scholar
  9. 9.
    Dudley AC. Tumor endothelial cells. Cold Spring Harb Perspect Med. 2012;2(3):a006536. doi: 10.1101/cshperspect.a006536.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22. doi: 10.1016/j.ccr.2012.02.022.PubMedCrossRefGoogle Scholar
  11. 11.
    Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216–9. doi: 10.1126/science.1176009.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406. doi: 10.1083/jcb.201102147.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4(2):165–78. doi: 10.1242/dmm.004077.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu C-C, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and Accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25(6):719–34. doi: 10.1016/j.ccr.2014.04.005.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25(6):735–47. doi: 10.1016/j.ccr.2014.04.021.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Terai S, Fushida S, Tsukada T, Kinoshita J, Oyama K, Okamoto K, et al. Bone marrow derived “fibrocytes” contribute to tumor proliferation and fibrosis in gastric cancer. Gastric Cancer. 2014;18(2):306–13. doi: 10.1007/s10120-014-0380-0.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Zhang H, Maric I, DiPrima MJ, Khan J, Orentas RJ, Kaplan RN, Mackall CL. Fibrocytes represent a novel MDSC subset circulating in patients with metastatic cancer. Blood. 2013;122(7):1105–13. doi: 10.1182/blood-2012-08-449413.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    van Deventer HW, Palmieri DA, Wu QP, McCook EC, Serody JS. Circulating fibrocytes prepare the lung for cancer metastasis by recruiting Ly-6C+ monocytes via CCL2. J Immunol. 2013;190(9):4861–7. doi: 10.4049/jimmunol.1202857.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Sounni NE, Noel A. Targeting the tumor microenvironment for cancer therapy. Clin Chem. 2013;59(1):85–93. doi: 10.1373/clinchem.2012.185363.PubMedCrossRefGoogle Scholar
  20. 20.
    Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res. 2006;66(23):11089–93. doi: 10.1158/0008-5472.CAN-06-2407.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820–7. doi: 10.1038/nature04186.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Maher J, Davies ET. Targeting cytotoxic T lymphocytes for cancer immunotherapy. 2004;1–5. doi: 10.1038/sj.bjc.6602022.
  23. 23.
    Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother. 2005;54(8):721–8. doi: 10.1007/s00262-004-0653-2.PubMedCrossRefGoogle Scholar
  24. 24.
    Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Investig. 2012;122(3):787–95. doi: 10.1172/JCI59643.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol. 2008;66(1):1–9. doi: 10.1016/j.critrevonc.2007.07.004.PubMedCrossRefGoogle Scholar
  26. 26.
    Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus ‘N2’ TAN. Cancer Cell. 2009;16(3):183–94. doi: 10.1016/j.ccr.2009.06.017.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cao Y, Arbiser J, D'Amato RJ, D'Amore PA, Ingber DE, Kerbel R, et al. Forty-year journey of angiogenesis translational research. Sci Transl Med. 2011;3(114):114rv3. doi: 10.1126/scitranslmed.3003149.PubMedCrossRefGoogle Scholar
  28. 28.
    Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29(6):15–8. doi: 10.1016/S0093-7754(02)70065-1.PubMedCrossRefGoogle Scholar
  29. 29.
    Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64. doi: 10.1016/S0092-8674(00)80108-7.PubMedCrossRefGoogle Scholar
  30. 30.
    Liu Q, Hu T, He L, Huang X, Tian X, Zhang H, et al. Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat Commun. 2015;6:1–12. doi: 10.1038/ncomms7020.Google Scholar
  31. 31.
    Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000;156(4):1363–80. doi: 10.1016/S0002-9440(10)65006-7.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Xiao L, Harrell JC, Perou CM, Dudley AC. Identification of a stable molecular signature in mammary tumor endothelial cells that persists in vitro. Angiogenesis. 2013;17(3):511–8. doi: 10.1007/s10456-013-9409-y.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Bustos M, Martínez JA, Moreno-Aliaga MJ. Role of obesity-associated dysfunctional adipose tissue in cancer: a molecular nutrition approach. Biochim Biophys Acta. 2011;1807(6):664–78. doi: 10.1016/j.bbabio.2010.11.004.PubMedCrossRefGoogle Scholar
  34. 34.
    Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91. doi: 10.1038/nrc1408.PubMedCrossRefGoogle Scholar
  35. 35.
    De Pergola G, Silvestris F. Obesity as a major risk factor for cancer. J Obes. 2013;2013:291546.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38. doi: 10.1056/NEJMoa021423.PubMedCrossRefGoogle Scholar
  37. 37.
    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78. doi: 10.1016/S0140-6736(08)60269-X.PubMedCrossRefGoogle Scholar
  38. 38.
    O’Rourke RW. Obesity and cancer. In: Metabolic syndrome and diabetes. New York: Springer; 2016. p. 111–23. doi: 10.1007/978-1-4939-3220-7_8.CrossRefGoogle Scholar
  39. 39.
    Geliebter A, Atalayer D, Flancbaum L, Gibson CD. Comparison of body adiposity index (BAI) and BMI with estimations of % body fat in clinically severe obese women. Obesity. 2013;21(3):493–8. doi: 10.1002/oby.20264.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Moon H-G, Ju Y-T, Jeong C-Y, Jung E-J, Lee Y-J, Hong S-C, et al. Visceral obesity may affect oncologic outcome in patients with colorectal cancer. Ann Surg Oncol. 2008;15(7):1918–22. doi: 10.1245/s10434-008-9891-4.PubMedCrossRefGoogle Scholar
  41. 41.
    Choi Y, Park B, Jeong BC, Seo SI, Jeon SS, Choi HY, et al. Body mass index and survival in patients with renal cell carcinoma: a clinical-based cohort and meta-analysis. Int J Cancer. 2012;132(3):625–34. doi: 10.1002/ijc.27639.PubMedCrossRefGoogle Scholar
  42. 42.
    Wang J, Myles B, Wei C, Chang JY, Hofstetter WL, Ajani JA, et al. Obesity and outcomes in patients treated with chemoradiotherapy for esophageal carcinoma. Dis Esophagus. 2013a;27(2):168–75. doi: 10.1111/dote.12074.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ablamunits V, Cohen Y, Brazee IB, Gaetz HP, Vinson C, Klebanov S. Susceptibility to induced and spontaneous carcinogenesis is increased in fatless A-ZIP/F-1 but not in obese ob/ob mice. Cancer Res. 2006;66(17):8897–902. doi: 10.1158/0008-5472.CAN-05-4679.PubMedCrossRefGoogle Scholar
  44. 44.
    Nunez NP. Accelerated tumor formation in a fatless mouse with type 2 diabetes and inflammation. Cancer Res. 2006;66(10):5469–76. doi: 10.1158/0008-5472.CAN-05-4102.PubMedCrossRefGoogle Scholar
  45. 45.
    Hursting SD, Nunez NP, Varticovski L, Vinson C. The obesity-cancer link: lessons learned from a fatless mouse. Cancer Res. 2007;67(6):2391–3. doi: 10.1158/0008-5472.CAN-06-4237.PubMedCrossRefGoogle Scholar
  46. 46.
    Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes. 2003;52(7):1779–85. doi: 10.2337/diabetes.52.7.1779.PubMedCrossRefGoogle Scholar
  47. 47.
    Heston WE, Vlahakis G. Influence of the Ay gene on mammary-gland tumors, hepatomas, and normal growth in mice. Oxford University Press; 1961. doi: 10.1093/jnci/26.4.969.
  48. 48.
    Heston WE, Vlahakis G. C3H-Avy—a high hepatoma and high mammary tumor strain of mice. J Natl Cancer Inst. 1968;40(6):1161–6. doi: 10.1093/jnci/40.6.1161.PubMedGoogle Scholar
  49. 49.
    Wolff GL, Kodell RL, Cameron AM, Medina D. Accelerated appearance of chemically induced mammary carcinomas in obese yellow (Avy/A) (BALB/c X VY) F1 hybrid mice. J Toxicol Environ Health. 1982;10(1):131–42. doi: 10.1080/15287398209530237.PubMedCrossRefGoogle Scholar
  50. 50.
    Wolff GL, Medina D, Umholtz RL. Manifestation of hyperplastic alveolar nodules and mammary tumors in “viable yellow” and non-yellow mice. J Natl Cancer Inst. 1979;63(3):781–5. doi: 10.1093/jnci/63.3.781.PubMedCrossRefGoogle Scholar
  51. 51.
    Wolff GL, ROBERTS DW, Mountjoy KG. Physiological consequences of ectopic agouti gene expression: the yellow obese mouse syndrome. Physiol Genomics. 1999;1(3):151–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Waxler SH, Tabar P, Melcher LR. Obesity and the time of appearance of spontaneous mammary carcinoma in C3H mice. Cancer Res. 1953;13(3):276–8.PubMedGoogle Scholar
  53. 53.
    Waxler SH, Leef MF. Augmentation of mammary tumors in castrated obese C3H mice. Cancer Res. 1966;26(5):860–2.PubMedGoogle Scholar
  54. 54.
    Núñez NP, Perkins SN, Smith NCP, Berrigan D, Berendes DM, Varticovski L, et al. Obesity Accelerates mouse mammary tumor growth in the absence of ovarian hormones. Nutr Cancer. 2008;60(4):534–41. doi: 10.1080/01635580801966195.PubMedCrossRefGoogle Scholar
  55. 55.
    Algire C, Amrein L, Zakikhani M, Panasci L, Pollak M. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocr Relat Cancer. 2010;17(2):351–60. doi: 10.1677/ERC-09-0252.PubMedCrossRefGoogle Scholar
  56. 56.
    Teraoka N, Mutoh M, Takasu S, Ueno T, Nakano K, Takahashi M, et al. High susceptibility to azoxymethane-induced colorectal carcinogenesis in obese KK-Ay mice. Int J Cancer. 2011;129(3):528–35. doi: 10.1002/ijc.25711.PubMedCrossRefGoogle Scholar
  57. 57.
    Yakar S, Núñez NP, Pennisi P, Brodt P, Sun H, Fallavollita L, et al. Increased tumor growth in mice with diet-induced obesity: impact of ovarian hormones. Endocrinology. 2013;147(12):5826–34. doi: 10.1210/en.2006-0311.CrossRefGoogle Scholar
  58. 58.
    Hill-Baskin AE, Markiewski MM, Buchner DA, Shao H, DeSantis D, Hsiao G, et al. Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum Mol Genet. 2009;18(16):2975–88. doi: 10.1093/hmg/ddp236.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Park EJ, Lee JH, Yu G-Y, He G, Ali SR, Holzer RG, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140(2):197–208. doi: 10.1016/j.cell.2009.12.052.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Blando J, Moore T, Hursting S, Jiang G, Saha A, Beltran L, et al. Dietary energy balance modulates prostate cancer progression in Hi-Myc mice. Cancer Prev Res (Phila). 2011;4(12):2002–14. doi: 10.1158/1940-6207.CAPR-11-0182.CrossRefGoogle Scholar
  61. 61.
    Bonorden MJL, Grossmann ME, Ewing SA, Rogozina OP, Ray A, Nkhata KJ, et al. Growth and progression of TRAMP prostate tumors in relationship to diet and obesity. Prostate Cancer. 2012;2012(5):1–13. doi: 10.1155/2012/543970.CrossRefGoogle Scholar
  62. 62.
    Laurent V, rard AGE, Mazerolles C, Le Gonidec S, Toulet AEL, Nieto L, et al. Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat Commun. 2016;7:1–15. doi: 10.1038/ncomms10230.Google Scholar
  63. 63.
    Llaverias G, Danilo C, Wang Y, Witkiewicz AK, Daumer K, Lisanti MP, Frank PG. A western-type diet accelerates tumor progression in an autochthonous mouse model of prostate cancer. Am J Pathol. 2010;177(6):3180–91. doi: 10.2353/ajpath.2010.100568.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Dennis LK, Lowe JB, Lynch CF, Alavanja MCR. Cutaneous melanoma and obesity in the agricultural health study. Ann Epidemiol. 2008;18(3):214–21. doi: 10.1016/j.annepidem.2007.09.003.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Dinkova-Kostova AT, Fahey JW, Jenkins SN, Wehage SL, Talalay P. Rapid body weight gain increases the risk of UV radiation–induced skin carcinogenesis in SKH-1 hairless mice. Nutr Res. 2008;28(8):539–43. doi: 10.1016/j.nutres.2008.05.009.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bjørndal B, Burri L, Staalesen V, Skorve J. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes. 2011;2011:490650.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Meunier P, Aaron J, Edouard C, VlGNON G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue: a quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971;80:147.PubMedCrossRefGoogle Scholar
  68. 68.
    Rutkowski JM, Stern JH, Scherer PE. Beyond the cell: the cell biology of fat expansion. J Cell Biol. 2015;208(5):501–12. doi: 10.1083/jcb.201409063.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Phys Cell Phys. 2012;302(2):C327–59. doi: 10.1152/ajpcell.00168.2011.CrossRefGoogle Scholar
  70. 70.
    Zhang Y, Daquinag A, Traktuev DO, Amaya-Manzanares F, Simmons PJ, March KL, et al. White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Res. 2009;69(12):5259–66. doi: 10.1158/0008-5472.CAN-08-3444.PubMedCrossRefGoogle Scholar
  71. 71.
    Zhang Y, Daquinag AC, Amaya-Manzanares F, Sirin O, Tseng C, Kolonin MG. Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Res. 2012;72(20):5198–208. doi: 10.1158/0008-5472.CAN-12-0294.PubMedCrossRefGoogle Scholar
  72. 72.
    Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Publ Group. 2013;10(1):24–36. doi: 10.1038/nrendo.2013.204.Google Scholar
  73. 73.
    Hassan M, Latif N, Yacoub M. Adipose tissue: friend or foe? Nat Rev Cardiol. 2012;9(12):689–702. doi: 10.1038/nrcardio.2012.148.PubMedCrossRefGoogle Scholar
  74. 74.
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17. doi: 10.1056/NEJMoa0810780.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nedergaard J, Cannon B. The browning of white adipose tissue: some burning issues. Cell Metab. 2014;20(3):396–407. doi: 10.1016/j.cmet.2014.07.005.PubMedCrossRefGoogle Scholar
  76. 76.
    Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19(10):1252–63. doi: 10.1038/nm.3361.PubMedCrossRefGoogle Scholar
  77. 77.
    Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang A-H, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–76. doi: 10.1016/j.cell.2012.05.016.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Rosenwald M, Perdikari A, Rülicke T, Wolfrum C. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol. 2013;15(6):659–67. doi: 10.1038/ncb2740.PubMedCrossRefGoogle Scholar
  79. 79.
    Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454(7207):961–7. doi: 10.1038/nature07182.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci. 2007;104(11):4401–6. doi: 10.1073/pnas.0610615104.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab. 2010;298(6):E1244–53. doi: 10.1152/ajpendo.00600.2009.PubMedCrossRefGoogle Scholar
  82. 82.
    Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol. 2000;279(3):C670–81. doi: 10.1292/jvms.61.403.PubMedCrossRefGoogle Scholar
  83. 83.
    Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med. 2013b;19(10):1338–44. doi: 10.1038/nm.3324.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci U S A. 2011;108(1):143–8. doi: 10.1073/pnas.1010929108.PubMedCrossRefGoogle Scholar
  85. 85.
    Lee Y-H, Petkova AP, Mottillo EP, Granneman JG. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab. 2012;15(4):480–91. doi: 10.1016/j.cmet.2012.03.009.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Kolonin MG. Adipose tissue and cancer. 2013. doi: 10.1007/978-1-4614-7660-3.
  87. 87.
    Nakajima I, Muroya S, Tanabe RI, Chikuni K. Positive effect of collagen V and VI on triglyceride accumulation during differentiation in cultures of bovine intramuscular adipocytes. Differentiation. 2002;70(2–3):84–91. doi: 10.1046/j.1432-0436.2002.700203.x.PubMedCrossRefGoogle Scholar
  88. 88.
    Sillat T, Saat R, Pöllänen R, Hukkanen M, Takagi M, Konttinen YT. Basement membrane collagen type IV expression by human mesenchymal stem cells during adipogenic differentiation. J Cell Mol Med. 2012;16(7):1485–95. doi: 10.1111/j.1582-4934.2011.01442.x.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Tan J, Buache E, Chenard M-P, Dali-Youcef N, Rio M-C. Adipocyte is a non-trivial, dynamic partner of breast cancer cells. Int J Dev Biol. 2011;55(7–8-9):851–9. doi: 10.1387/ijdb.113365jt.PubMedCrossRefGoogle Scholar
  90. 90.
    Lefebvre O, Wolf C, Limacher JM, Hutin P, Wendling C, LeMeur M, et al. The breast cancer-associated stromelysin-3 gene is expressed during mouse mammary gland apoptosis. J Cell Biol. 1992;119(4):997–1002. doi: 10.1083/jcb.119.4.997.PubMedCrossRefGoogle Scholar
  91. 91.
    Wagner M, Bjerkvig R, Wiig H, Dudley AC. Loss of adipocyte specification and necrosis augment tumor-associated inflammation. Adipocytes. 2013;2(3):176–83. doi: 10.4161/adip.24472.CrossRefGoogle Scholar
  92. 92.
    Wagner M, Bjerkvig R, Wiig H, Melero-Martin JM, Lin R-Z, Klagsbrun M, Dudley AC. Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis. Angiogenesis. 2012;15(3):481–95. doi: 10.1007/s10456-012-9276-y.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Andarawewa KL, Motrescu ER, Chenard M-P, Gansmuller A, Stoll I, Tomasetto C, Rio M-C. Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res. 2005;65(23):10862–71. doi: 10.1158/0008-5472.CAN-05-1231.PubMedCrossRefGoogle Scholar
  94. 94.
    Motrescu ER, Rio M-C. Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle. Biol Chem. 2008;389(8):1037–41. doi: 10.1515/BC.2008.110.PubMedCrossRefGoogle Scholar
  95. 95.
    Gordon S. Macrophage heterogeneity and tissue lipids. J Clin Investig. 2007;117(1):89–4. doi: 10.1172/JCI30992.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503. doi: 10.1038/nm.2492.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Elliott BE, Tam SP, Dexter D, Chen ZQ. Capacity of adipose tissue to promote growth and metastasis of a murine mammary carcinoma: effect of estrogen and progesterone. Int J Cancer. 1992;51(3):416–24. doi: 10.1002/ijc.2910510314.PubMedCrossRefGoogle Scholar
  98. 98.
    Iyengar P, Combs TP, Shah SJ, Gluon-Evans V, Pollard JW, Albanese C, et al. Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene. 2003;22(41):6408–23. doi: 10.1038/sj.onc.1206737.PubMedCrossRefGoogle Scholar
  99. 99.
    Manabe Y, Toda S, Miyazaki K, Sugihara H. Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer–stromal cell interactions. J Pathol. 2003;201(2):221–8. doi: 10.1002/path.1430.PubMedCrossRefGoogle Scholar
  100. 100.
    Amemori S, Ootani A, Aoki S, Fujise T, Shimoda R, Kakimoto T, et al. Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am J Physiol Gastrointest Liver Physiol. 2007;292(3):G923–9. doi: 10.1152/ajpgi.00145.2006.PubMedCrossRefGoogle Scholar
  101. 101.
    Tokuda Y, Satoh Y, Fujiyama C, Toda S, Sugihara H, Masaki Z. Prostate cancer cell growth is modulated by adipocyte-cancer cell interaction. BJU Int. 2003;91(7):716–20. doi: 10.1046/j.1464-410X.2003.04218.x.PubMedCrossRefGoogle Scholar
  102. 102.
    White PB, True EM, Ziegler KM, Wang SS, Swartz-Basile DA, Pitt HA, Zyromski NJ. Insulin, leptin, and tumoral adipocytes promote murine pancreatic cancer growth. J Gastrointest Surg. 2010;14(12):1888–94. doi: 10.1007/s11605-010-1349-x.PubMedCrossRefGoogle Scholar
  103. 103.
    Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71(7):2455–65. doi: 10.1158/0008-5472.CAN-10-3323.PubMedCrossRefGoogle Scholar
  104. 104.
    Bochet L, Meulle A, Imbert S, Salles B, Valet P, Muller C. Cancer-associated adipocytes promotes breast tumor radioresistance. Biochem Biophys Res Commun. 2011;411(1):102–6. doi: 10.1016/j.bbrc.2011.06.101.PubMedCrossRefGoogle Scholar
  105. 105.
    Bochet L, Lehuede C, Dauvillier S, Wang YY, Dirat B, Laurent V, et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 2013;73(18):5657–68. doi: 10.1158/0008-5472.CAN-13-0530.PubMedCrossRefGoogle Scholar
  106. 106.
    Berry R, Rodeheffer MS. Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol. 2013;15(3):302–8. doi: 10.1038/ncb2696.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Brown MD, Hart CA, Gazi E, Bagley S, Clarke NW. Promotion of prostatic metastatic migration towards human bone marrow stoma by omega 6 and its inhibition by omega 3 PUFAs. Br J Cancer. 2006;94(6):842–53. doi: 10.1038/sj.bjc.6603030.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Brown MD, Hart C, Gazi E, Gardner P, Lockyer N, Clarke N. Influence of omega-6 PUFA arachidonic acid and bone marrow adipocytes on metastatic spread from prostate cancer. Br J Cancer. 2009;102(2):403–13. doi: 10.1038/sj.bjc.6605481.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clin Exp Metastasis. 2015;32(4):353–68. doi: 10.1007/s10585-015-9714-5.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Herroon M, Rajagurubandara E, Hardaway AL, Powell K, Turchick A, Feldmann D, Podgorski I. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget. 2013;4(11):2108–23. doi: 10.18632/oncotarget.1482.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Paz-Filho G, Mishra AK, Licinio J. Adipokines: soluble factors from adipose tissue implicated in cancer. In: Adipose tissue and cancer. New York: Springer; 2013. p. 71–97. doi: 10.1007/978-1-4614-7660-3_5.CrossRefGoogle Scholar
  112. 112.
    Garofalo C, Surmacz E. Leptin and cancer. J Cell Physiol. 2006;207(1):12–22. doi: 10.1002/jcp.20472.PubMedCrossRefGoogle Scholar
  113. 113.
    Paz-Filho G, Lim EL, Wong ML, Licinio J. Associations between adipokines and obesity-related cancer. Front Biosci. 2011;16:1634–50.CrossRefGoogle Scholar
  114. 114.
    Bjorbaek C, Kahn B B. Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res. 2004;59:305–331.Google Scholar
  115. 115.
    Ceddia RB. Direct metabolic regulation in skeletal muscle and fat tissue by leptin: implications for glucose and fatty acids homeostasis. Int J Obes. 2005;29(10):1175–83. doi: 10.1038/sj.ijo.0803025.CrossRefGoogle Scholar
  116. 116.
    Martin SS, Qasim A, Reilly MP. Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol. 2008;52(15):1201–10.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    St-Pierre J, Tremblay ML. Modulation of leptin resistance by protein tyrosine phosphatases. Cell Metab. 2012;15(3):292–7. doi: 10.1016/j.cmet.2012.02.004.PubMedCrossRefGoogle Scholar
  118. 118.
    Boguszewski CL, Paz-Filho G, Velloso LA. Neuroendocrine body weight regulation: integration between fat tissue, gastrointestinal tract, and the brain. Endokrynol Pol. 2010;61(2):194–206.PubMedGoogle Scholar
  119. 119.
    Fruhbeck G. Intracellular signalling pathways activated by leptin. Biochem J. 2006;393(1):7–20.PubMedCrossRefGoogle Scholar
  120. 120.
    Kelesidis T, Kelesidis I, Chou S, Mantzoros CS. Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med. 2010;152(2):93–100. doi: 10.7326/0003-4819-152-2-201001190-00008.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Bouloumié A, Drexler HC, Lafontan M, Busse R. Leptin, the product of Ob gene, promotes angiogenesis. Circ Res. 1998;83(10):1059–66. doi: 10.1161/01.RES.83.10.1059.PubMedCrossRefGoogle Scholar
  122. 122.
    Onuma M, Bub JD, Rummel TL, Iwamoto Y. Prostate cancer cell-adipocyte interaction: leptin mediates androgen-independent prostate cancer cell proliferation through c-Jun NH2-terminal kinase. J Biol Chem. 2003;278(43):42660–7. doi: 10.1074/jbc.M304984200.PubMedCrossRefGoogle Scholar
  123. 123.
    Hardwick JCH, Van Den Brink GR, Offerhaus GJ, Van Deventer SJH, Peppelenbosch MP. Leptin is a growth factor for colonic epithelial cells. Gastroenterology. 2001;121(1):79–90. doi: 10.1053/gast.2001.25490.PubMedCrossRefGoogle Scholar
  124. 124.
    Ogunwobi OO, Beales ILP. The anti-apoptotic and growth stimulatory actions of leptin in human colon cancer cells involves activation of JNK mitogen activated protein kinase, JAK2 and PI3 kinase/Akt. Int J Color Dis. 2007;22(4):401–9. doi: 10.1007/s00384-006-0181-y.CrossRefGoogle Scholar
  125. 125.
    Uddin S, Bavi PP, Hussain AR, Alsbeih G, Al-Sanea N, Abduljabbar A, et al. Leptin receptor expression in middle eastern colorectal cancer and its potential clinical implication. Carcinogenesis. 2009;30(11):1832–40. doi: 10.1093/carcin/bgp145.PubMedCrossRefGoogle Scholar
  126. 126.
    Brown KA, Simpson ER. Obesity and breast cancer: progress to understanding the relationship. Cancer Res. 2010;70(1):4–7. doi: 10.1158/0008-5472.CAN-09-2257.PubMedCrossRefGoogle Scholar
  127. 127.
    Cirillo D, Rachiglio AM, la Montagna R, Giordano A, Normanno N. Leptin signaling in breast cancer: an overview. J Cell Biochem. 2008;105(4):956–64. doi: 10.1002/jcb.21911.PubMedCrossRefGoogle Scholar
  128. 128.
    Somasundar P, Yu AK, Vona-Davis L, McFadden DW. Differential effects of leptin on cancer in vitro. J Surg Res. 2003;113(1):50–5. doi: 10.1016/S0022-4804(03)00166-5.PubMedCrossRefGoogle Scholar
  129. 129.
    Castellucci M, De Matteis R, Meisser A, Cancello R, Monsurrò V, Islami D, et al. Leptin modulates extracellular matrix molecules and metalloproteinases: possible implications for trophoblast invasion. Mol Hum Reprod. 2000;6(10):951–8. doi: 10.1093/molehr/6.10.951.PubMedCrossRefGoogle Scholar
  130. 130.
    Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92(03):347–55. doi: 10.1079/BJN20041213.PubMedCrossRefGoogle Scholar
  131. 131.
    Garonna E, Botham KM, Birdsey GM, Randi AM, Gonzalez-Perez RR, Wheeler-Jones CPD. Vascular endothelial growth factor receptor-2 couples cyclo-oxygenase-2 with pro-angiogenic actions of leptin on human endothelial cells. PLoS One. 2011;6(4):e18823. doi: 10.1371/journal.pone.0018823.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Park H, Kim M, Kwon GT, Lim DY, Yu R, Sung M-K, et al. A high-fat diet increases angiogenesis, solid tumor growth, and lung metastasis of CT26 colon cancer cells in obesity-resistant BALB/c mice. Mol Carcinog. 2012;51(11):869–80. doi: 10.1002/mc.20856.PubMedCrossRefGoogle Scholar
  133. 133.
    Park H-Y, Kwon HM, Lim HJ, Hong BK, Lee JY, Park BE, et al. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med. 2001;33(2):95–102.PubMedCrossRefGoogle Scholar
  134. 134.
    Sierra-Honigmann MR, Nath AK, Murakami C, Garcı́a-Cardeña G, Papapetropoulos A, Sessa WC, et al. Biological action of leptin as an angiogenic factor. Science. 1998;281(5383):1683–6. doi: 10.1126/science.281.5383.1683.PubMedCrossRefGoogle Scholar
  135. 135.
    Gonzalez RR, Cherfils S, Escobar M, Yoo JH, Carino C, Styer AK, et al. Leptin signaling promotes the growth of mammary tumors and increases the expression of vascular endothelial growth factor (VEGF) and its receptor type two (VEGF-R2). J Biol Chem. 2006;281(36):26320–8. doi: 10.1074/jbc.M601991200.PubMedCrossRefGoogle Scholar
  136. 136.
    Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2013;26(3):439–51. doi: 10.1210/er.2005-0005.CrossRefGoogle Scholar
  137. 137.
    Waki H, Yamauchi T, Kamon J, Kita S, Ito Y, Hada Y, et al. Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology. 2013;146(2):790–6. doi: 10.1210/en.2004-1096.CrossRefGoogle Scholar
  138. 138.
    Dalamaga M, Diakopoulos KN, Mantzoros CS. The role of adiponectin in cancer: a review of current evidence. Endocr Rev. 2012;33(4):547–94. doi: 10.1210/er.2011-1015.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Liu M, Liu F. Transcriptional and post-translational regulation of adiponectin. Biochem J. 2010;425:41–52.CrossRefGoogle Scholar
  140. 140.
    Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2013;86(5):1930–5.CrossRefGoogle Scholar
  141. 141.
    Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762–9. doi: 10.1038/nature01705.PubMedCrossRefGoogle Scholar
  142. 142.
    Bjursell M, Ahnmark A, Bohlooly-Y M, William-Olsson L, Rhedin M, Peng X-R, et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes. 2007;56(3):583–93. doi: 10.2337/db06-1432.PubMedCrossRefGoogle Scholar
  143. 143.
    Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007;13(3):332–9. doi: 10.1038/nm1557.PubMedCrossRefGoogle Scholar
  144. 144.
    Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol. 2006;8(5):516–23. doi: 10.1038/ncb1404.PubMedCrossRefGoogle Scholar
  145. 145.
    Ahima RS. Adipose tissue as an endocrine organ. Obesity. 2006;14(S8):242S–9S. doi: 10.1038/oby.2006.317.PubMedCrossRefGoogle Scholar
  146. 146.
    Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003;278(4):2461–8. doi: 10.1074/jbc.M209033200.PubMedCrossRefGoogle Scholar
  147. 147.
    Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation. 2003;107(5):671–4.PubMedCrossRefGoogle Scholar
  148. 148.
    Bråkenhielm E, Veitonmäki N, Cao R, Kihara S, Matsuzawa Y, Zhivotovsky B, et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci. 2004;101(8):2476–81. doi: 10.1073/pnas.0308671100.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Fenton JI, Birmingham JM, Hursting SD, Hord NG. Adiponectin blocks multiple signaling cascades associated with leptin-induced cell proliferation in Apc Min/+ colon epithelial cells. Int J Cancer. 2008;122(11):2437–45. doi: 10.1002/ijc.23436.PubMedCrossRefGoogle Scholar
  150. 150.
    VanSaun MN. Molecular pathways: adiponectin and leptin signaling in cancer. Clin Cancer Res. 2013;19(8):1926–32. doi: 10.1158/1078-0432.CCR-12-0930.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Chiu Y-C, Shieh D-C, Tong K-M, Chen C-P, Huang K-C, Chen P-C, et al. Involvement of AdipoR receptor in adiponectin-induced motility and alpha2beta1 integrin upregulation in human chondrosarcoma cells. Carcinogenesis. 2009;30(10):1651–9. doi: 10.1093/carcin/bgp156.PubMedCrossRefGoogle Scholar
  152. 152.
    Ishikawa M, Kitayama J, Yamauchi T, Kadowaki T, Maki T, Miyato H, et al. Adiponectin inhibits the growth and peritoneal metastasis of gastric cancer through its specific membrane receptors AdipoR1 and AdipoR2. Cancer Sci. 2007;98(7):1120–7. doi: 10.1111/j.1349-7006.2007.00486.x.PubMedCrossRefGoogle Scholar
  153. 153.
    Kim AY, Lee YS, Kim KH, Lee JH, Lee HK, Jang S-H, et al. Adiponectin represses colon cancer cell proliferation via AdipoR1- and -R2-mediated AMPK activation. Mol Endocrinol (Baltimore, MD). 2010;24(7):1441–52. doi: 10.1210/me.2009-0498.CrossRefGoogle Scholar
  154. 154.
    Man K, Ng KTP, Xu A, Cheng Q, Lo CM, Xiao JW, et al. Suppression of liver tumor growth and metastasis by adiponectin in nude mice through inhibition of tumor angiogenesis and downregulation of Rho kinase/IFN-inducible protein 10/matrix metalloproteinase 9 signaling. Clin Cancer Res. 2010;16(3):967–77. doi: 10.1158/1078-0432.CCR-09-1487.PubMedCrossRefGoogle Scholar
  155. 155.
    Wang Y, Lam JB, Lam KSL, Liu J, Lam MC, Hoo RLC, et al. Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res. 2006;66(23):11462–70. doi: 10.1158/0008-5472.CAN-06-1969.PubMedCrossRefGoogle Scholar
  156. 156.
    Bub JD, Miyazaki T, Iwamoto Y. Adiponectin as a growth inhibitor in prostate cancer cells. Biochem Biophys Res Commun. 2006;340(4):1158–66. doi: 10.1016/j.bbrc.2005.12.103.PubMedCrossRefGoogle Scholar
  157. 157.
    Kelesidis I, Kelesidis T, Mantzoros CS. Adiponectin and cancer: a systematic review. Br J Cancer. 2006;94(9):1221–5. doi: 10.1038/sj.bjc.6603051.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Cleary MP, Grossmann ME. Minireview: obesity and breast cancer: the estrogen connection. Endocrinology. 2009;150(6):2537–42. doi: 10.1210/en.2009-0070.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Cust AE, Kaaks R, Friedenreich C, Bonnet F, Laville M, Lukanova A, et al. Plasma adiponectin levels and endometrial cancer risk in pre- and postmenopausal women. J Clin Endocrinol Metabol. 2007;92(1):255–63. doi: 10.1210/jc.2006-1371.CrossRefGoogle Scholar
  160. 160.
    Cong L, Gasser J, Zhao J, Yang B, Li F, Zhao AZ. Human adiponectin inhibits cell growth and induces apoptosis in human endometrial carcinoma cells, HEC-1-A and RL95 2. Endocr Relat Cancer. 2007;14(3):713–20. doi: 10.1677/ERC-07-0065.PubMedCrossRefGoogle Scholar
  161. 161.
    Sugiyama M, Takahashi H, Hosono K, Endo H, Kato S, Yoneda K, et al. Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int J Oncol. 2009;34(2):339–44.PubMedGoogle Scholar
  162. 162.
    Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol. 1994;14(2):1431–7.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307(5708):426–30. doi: 10.1126/science.1097243.PubMedCrossRefGoogle Scholar
  164. 164.
    Revollo JR, Grimm AA, Imai S-I. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr Opin Gastroenterol. 2007;23(2):164–70. doi: 10.1097/MOG.0b013e32801b3c8f.PubMedCrossRefGoogle Scholar
  165. 165.
    Curat CA, Wegner V, Sengenès C, Miranville A, Tonus C, Busse R, Bouloumié A. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia. 2006;49(4):744–7. doi: 10.1007/s00125-006-0173-z.PubMedCrossRefGoogle Scholar
  166. 166.
    Bi T-Q, Che X-M. Nampt/PBEF/visfatin and cancer. Cancer Biol Ther. 2014;10(2):119–25. doi: 10.4161/cbt.10.2.12581.CrossRefGoogle Scholar
  167. 167.
    Hageman GJ, Stierum RH. Niacin, poly(ADP-ribose) polymerase-1 and genomic stability. Mutat Res. 2001;475(1–2):45–56.PubMedCrossRefGoogle Scholar
  168. 168.
    Adya R, Tan BK, Punn A, Chen J, Randeva HS. Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: novel insights into visfatin-induced angiogenesis. Cardiovasc Res. 2008;78(2):356–65. doi: 10.1093/cvr/cvm111.PubMedCrossRefGoogle Scholar
  169. 169.
    Bae Y-H, Park H-J, Kim S-R, Kim J-Y, Kang Y, Kim J-A, et al. Notch1 mediates visfatin-induced FGF-2 upregulation and endothelial angiogenesis. Cardiovasc Res. 2010;89(2):cvq276–445. doi: 10.1093/cvr/cvq276.Google Scholar
  170. 170.
    Adya R, Tan BK, Chen J, Randeva HS. Pre-B cell colony enhancing factor (PBEF)/visfatin induces secretion of MCP-1 in human endothelial cells: role in visfatin-induced angiogenesis. Atherosclerosis. 2009;205(1):113–9. doi: 10.1016/j.atherosclerosis.2008.11.024.PubMedCrossRefGoogle Scholar
  171. 171.
    Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007;130(6):1095–107. doi: 10.1016/j.cell.2007.07.035.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Patel ST, Mistry T, Brown JEP, Digby JE, Adya R, Desai KM, Randeva HS. A novel role for the adipokine visfatin/pre-B cell colony-enhancing factor 1 in prostate carcinogenesis. Peptides. 2010;31(1):51–7. doi: 10.1016/j.peptides.2009.10.001.PubMedCrossRefGoogle Scholar
  173. 173.
    Wang B, Hasan MK, Alvarado E, Yuan H, Wu H, Chen WY. NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response. Oncogene. 2011;30(8):907–21. doi: 10.1038/onc.2010.468.PubMedCrossRefGoogle Scholar
  174. 174.
    Park H-J, Kim S-R, Kim SS, Wee H-J, Bae M-K, Ryu MH, Bae S-K. Visfatin promotes cell and tumor growth by upregulating Notch1 in breast cancer. Oncotarget. 2014;5(13):5087–99. doi: 10.18632/oncotarget.2086.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Iwaki T, Urano T, Umemura K. PAI-1, progress in understanding the clinical problem and its aetiology. Br J Haematol. 2012;157(3):291–8. doi: 10.1111/j.1365-2141.2012.09074.x.PubMedCrossRefGoogle Scholar
  176. 176.
    De Taeye B, Smith LH, Vaughan DE. Plasminogen activator inhibitor-1: a common denominator in obesity, diabetes and cardiovascular disease. Curr Opin Pharmacol. 2005;5(2):149–54. doi: 10.1016/j.coph.2005.01.007.PubMedCrossRefGoogle Scholar
  177. 177.
    Carter JC, Church FC. Obesity and breast cancer: the roles of peroxisome proliferator-activated receptor-γ and plasminogen activator inhibitor-1. PPAR Res. 2009;2009(4):345320–13. doi: 10.1155/2009/345320.PubMedPubMedCentralGoogle Scholar
  178. 178.
    van Kruijsdijk RCM, van der Wall E, Visseren FLJ. Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomarkers Prev. 2009;18(10):2569–78. doi: 10.1158/1055-9965.EPI-09-0372.PubMedCrossRefGoogle Scholar
  179. 179.
    Dass K, Ahmad A, Azmi AS, Sarkar SH, Sarkar FH. Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev. 2008;34(2):122–36. doi: 10.1016/j.ctrv.2007.10.005.PubMedCrossRefGoogle Scholar
  180. 180.
    Soff GA, Sanderowitz J, Gately S, Verrusio E, Weiss I, Brem S, Kwaan HC. Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primary tumor growth, tumor-associated angiogenesis, and metastasis to lung and liver in an athymic mouse model. J Clin Investig. 1995;96(6):2593–600. doi: 10.1172/JCI118323.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Roca C, Primo L, Valdembri D, Cividalli A, Declerck P, Carmeliet P, et al. Hyperthermia inhibits angiogenesis by a plasminogen activator inhibitor 1-dependent mechanism. Cancer Res. 2003;63(7):1500–7.PubMedGoogle Scholar
  182. 182.
    Bajou K, Maillard C, Jost M, Lijnen RH, Gils A, Declerck P, et al. Host-derived plasminogen activator inhibitor-1 (PAI-1) concentration is critical for in vivo tumoral angiogenesis and growth. Oncogene. 2004;23(41):6986–90. doi: 10.1038/sj.onc.1207859.PubMedCrossRefGoogle Scholar
  183. 183.
    Kwaan HC, Wang J, Svoboda K, Declerck PJ. Plasminogen activator inhibitor 1 may promote tumour growth through inhibition of apoptosis. Br J Cancer. 2000;82(10):1702–8. doi: 10.1054/bjoc.2000.1207.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Bajou K, Noel A, Gerard RD, Masson V, Brunner N, Holst-Hansen C, et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med. 1998;4(8):923–8.PubMedCrossRefGoogle Scholar
  185. 185.
    Gutierrez LS, Schulman A, Brito-Robinson T, Noria F, Ploplis VA, Castellino FJ. Tumor development is retarded in mice lacking the gene for urokinase-type plasminogen activator or its inhibitor, plasminogen activator inhibitor-1. Cancer Res. 2000;60(20):5839–47.PubMedGoogle Scholar
  186. 186.
    Wun TC, Palmier MO, Siegel NR, Smith CE. Affinity purification of active plasminogen activator inhibitor-1 (PAI-1) using immobilized anhydrourokinase. Demonstration of the binding, stabilization, and activation of PAI-1 by vitronectin. J Biol Chem. 1989;264(14):7862–8.PubMedGoogle Scholar
  187. 187.
    Palmieri D, Lee JW, Juliano RL, Church FC. Plasminogen activator inhibitor-1 and -3 increase cell adhesion and motility of MDA-MB-435 breast cancer cells. J Biol Chem. 2002;277(43):40950–7. doi: 10.1074/jbc.M202333200.PubMedCrossRefGoogle Scholar
  188. 188.
    Chazaud B, Ricoux R, Christov C, Plonquet A, Gherardi RK, Barlovatz-Meimon G. Promigratory effect of plasminogen activator inhibitor-1 on invasive breast cancer cell populations. Am J Pathol. 2002;160(1):237–46. doi: 10.1016/S0002-9440(10)64367-2.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Mertens I, Ballaux D, Funahashi T, Matsuzawa Y, Van der Planken M, Verrijken A, et al. Inverse relationship between plasminogen activator inhibitor-I activity and adiponectin in overweight and obese women. Interrelationship with visceral adipose tissue, insulin resistance, HDL-chol and inflammation. Thromb Haemost. 2005;94(6):1190–5.PubMedGoogle Scholar
  190. 190.
    Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9(5):361–71. doi: 10.1038/nrc2628.PubMedCrossRefGoogle Scholar
  191. 191.
    Sewter CP, Digby JE, Blows F, Prins J, O'Rahilly S. Regulation of tumour necrosis factor-alpha release from human adipose tissue in vitro. J Endocrinol. 1999;163(1):33–8.PubMedCrossRefGoogle Scholar
  192. 192.
    Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280(5):E745–51.PubMedCrossRefGoogle Scholar
  193. 193.
    Park IC, Park MJ, Choe TB, Jang JJ, Hong SI, Lee SH. TNF-alpha induces apoptosis mediated by AEBSF-sensitive serine protease(s) that may involve upstream caspase-3/CPP32 protease activation in a human gastric cancer cell line. Int J Oncol. 2000;16(6):1243–8.PubMedGoogle Scholar
  194. 194.
    Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R, et al. The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res. 2007;67(2):585–92. doi: 10.1158/0008-5472.CAN-06-2941.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    von Wolff M, Thaler CJ, Zepf C, Becker V, Beier HM, Strowitzki T. Endometrial expression and secretion of interleukin-6 throughout the menstrual cycle. Gynecol Endocrinol. 2002;16(2):121–9.CrossRefGoogle Scholar
  196. 196.
    Hagemann T, Wilson J, Kulbe H, Li NF, Leinster DA, Charles K, et al. Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. J Immunol. 2005;175(2):1197–205.PubMedCrossRefGoogle Scholar
  197. 197.
    Gordon GJ, Mani M, Mukhopadhyay L, Dong L, Yeap BY, Sugarbaker DJ, Bueno R. Inhibitor of apoptosis proteins are regulated by tumour necrosis factor-alpha in malignant pleural mesothelioma. J Pathol. 2007;211(4):439–46. doi: 10.1002/path.2120.PubMedCrossRefGoogle Scholar
  198. 198.
    Gray-Schopfer VC, Karasarides M, Hayward R, Marais R. Tumor necrosis factor-alpha blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer Res. 2007;67(1):122–9. doi: 10.1158/0008-5472.CAN-06-1880.PubMedCrossRefGoogle Scholar
  199. 199.
    Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, et al. “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med. 2008;205(6):1261–8. doi: 10.1084/jem.20080108.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Chiu JJ, Sgagias MK, Cowan KH. Interleukin 6 acts as a paracrine growth factor in human mammary carcinoma cell lines. Clin Cancer Res. 1996;2(1):215–21.PubMedGoogle Scholar
  201. 201.
    Conze D, Weiss L, Regen PS, Bhushan A, Weaver D, Johnson P, Rincón M. Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res. 2001;61(24):8851–8.PubMedGoogle Scholar
  202. 202.
    Hong DS, Angelo LS, Kurzrock R. Interleukin-6 and its receptor in cancer. Cancer. 2007;110(9):1911–28. doi: 10.1002/cncr.22999.PubMedCrossRefGoogle Scholar
  203. 203.
    Schafer ZT, Brugge JS. IL-6 involvement in epithelial cancers. J Clin Investig. 2007;117(12):3660–3. doi: 10.1172/JCI34237.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Investig. 2007;117(12):3988–4002. doi: 10.1172/JCI32533.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Benoy I, Salgado R, Colpaert C, Weytjens R, Vermeulen PB, Dirix LY. Serum interleukin 6, plasma VEGF, serum VEGF, and VEGF platelet load in breast cancer patients. Clin Breast Cancer. 2002;2(4):311–5.PubMedCrossRefGoogle Scholar
  206. 206.
    Kimijima I, Ohtake T, Sagara H, Watanabe T, Takenoshita S. Scattered fat invasion: an indicator for poor prognosis in premenopausal, and for positive estrogen receptor in postmenopausal breast cancer patients. Oncology. 2000;59(Suppl 1):25–30.PubMedCrossRefGoogle Scholar
  207. 207.
    Rio M-C, Dali-Youcef N, Tomasetto C. Local adipocyte cancer cell paracrine loop: can “sick fat” be more detrimental? Horm Mol Biol Clin Invest. 2015;21(1):43–56. doi: 10.1515/hmbci-2014-0044.Google Scholar
  208. 208.
    Yamaguchi J, Ohtani H, Nakamura K, Shimokawa I, Kanematsu T. Prognostic impact of marginal adipose tissue invasion in ductal carcinoma of the breast. Am J Clin Pathol. 2008;130(3):382–8. doi: 10.1309/MX6KKA1UNJ1YG8VN.PubMedCrossRefGoogle Scholar
  209. 209.
    Mathur A, Zyromski NJ, Pitt HA, Al-Azzawi H, Walker JJ, Saxena R, Lillemoe KD. Pancreatic steatosis promotes dissemination and lethality of pancreatic cancer. J Am Coll Surg. 2009;208(5):989–994. discussion 994–6. doi: 10.1016/j.jamcollsurg.2008.12.026.PubMedCrossRefGoogle Scholar
  210. 210.
    Finley DS, Calvert VS, Inokuchi J, Lau A, Narula N, Petricoin EF, et al. Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness. J Urol. 2009;182(4):1621–7. doi: 10.1016/j.juro.2009.06.015.PubMedCrossRefGoogle Scholar
  211. 211.
    Ho GYF, Wang T, Gunter MJ, Strickler HD, Cushman M, Kaplan RC, et al. Adipokines linking obesity with colorectal cancer risk in postmenopausal women. Cancer Res. 2012;72(12):3029–37. doi: 10.1158/0008-5472.CAN-11-2771.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Bolukbas FF, Kilic H, Bolukbas C, Gumus M, Horoz M, Turhal NS, Kavakli B. Serum leptin concentration and advanced gastrointestinal cancers: a case controlled study. BMC Cancer. 2004;4(1):29. doi: 10.1186/1471-2407-4-29.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Kumor A, Daniel P, Pietruczuk M, Małecka-Panas E. Serum leptin, adiponectin, and resistin concentration in colorectal adenoma and carcinoma (CC) patients. Int J Color Dis. 2009;24(3):275–81. doi: 10.1007/s00384-008-0605-y.CrossRefGoogle Scholar
  214. 214.
    Nakajima TE, Yamada Y, Hamano T, Furuta K, Matsuda T, Fujita S, et al. Adipocytokines as new promising markers of colorectal tumors: adiponectin for colorectal adenoma, and resistin and visfatin for colorectal cancer. Cancer Sci. 2010;101(5):1286–91. doi: 10.1111/j.1349-7006.2010.01518.x.PubMedCrossRefGoogle Scholar
  215. 215.
    Stattin P, Palmqvist R, Söderberg S, Biessy C, Ardnor B, Hallmans G, et al. Plasma leptin and colorectal cancer risk: a prospective study in northern Sweden. Oncol Rep. 2003;10(6):2015–21.PubMedGoogle Scholar
  216. 216.
    Tamakoshi K, Toyoshima H, Wakai K, Kojima M, Suzuki K, Watanabe Y, et al. Leptin is associated with an increased female colorectal cancer risk: a nested case-control study in Japan. Oncology. 2005;68(4–6):454–61. doi: 10.1159/000086988.PubMedCrossRefGoogle Scholar
  217. 217.
    Tessitore L, Vizio B, Jenkins O, De Stefano I, Ritossa C, Argiles JM, et al. Leptin expression in colorectal and breast cancer patients. Int J Mol Med. 2000;5(4):421–6.PubMedGoogle Scholar
  218. 218.
    Paik SS, Jang S-M, Jang K-S, Lee KH, Choi D, Jang SJ. Leptin expression correlates with favorable clinicopathologic phenotype and better prognosis in colorectal adenocarcinoma. Ann Surg Oncol. 2009;16(2):297–303. doi: 10.1245/s10434-008-0221-7.PubMedCrossRefGoogle Scholar
  219. 219.
    Vona-Davis L, Rose DP. Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocr Relat Cancer. 2007;14(2):189–206. doi: 10.1677/ERC-06-0068.PubMedCrossRefGoogle Scholar
  220. 220.
    Petridou E, Papadiamantis Y, Markopoulos C, Spanos E, Dessypris N, Trichopoulos D. Leptin and insulin growth factor I in relation to breast cancer (Greece). Cancer Causes Control. 2000;11(5):383–8.PubMedCrossRefGoogle Scholar
  221. 221.
    Macciò A, Madeddu C, Gramignano G, Mulas C, Floris C, Massa D, et al. Correlation of body mass index and leptin with tumor size and stage of disease in hormone-dependent postmenopausal breast cancer: preliminary results and therapeutic implications. J Mol Med (Berlin, Germany). 2010;88(7):677–86. doi: 10.1007/s00109-010-0611-8.CrossRefGoogle Scholar
  222. 222.
    Rose DP, Komninou D, Stephenson GD. Obesity, adipocytokines, and insulin resistance in breast cancer. Obes Rev. 2004;5(3):153–65. doi: 10.1111/j.1467-789X.2004.00142.x.PubMedCrossRefGoogle Scholar
  223. 223.
    Akinci M, Kosova F, Cetin B, Aslan S, Ari Z, Cetin A. Leptin levels in thyroid cancer. Asian J Surg. 2009;32(4):216–23. doi: 10.1016/S1015-9584(09)60397-3.PubMedCrossRefGoogle Scholar
  224. 224.
    Spyridopoulos TN, Petridou ET, Dessypris N, Terzidis A, Skalkidou A, Deliveliotis C, et al. Inverse association of leptin levels with renal cell carcinoma: results from a case-control study. Hormones (Athens). 2009;8(1):39–46.CrossRefGoogle Scholar
  225. 225.
    Liao LM, Schwartz K, Pollak M, Graubard BI, Li Z, Ruterbusch J, et al. Serum leptin and adiponectin levels and risk of renal cell carcinoma. Obesity. 2013;21(7):1478–85. doi: 10.1002/oby.20138.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Horiguchi A, Sumitomo M, Asakuma J, Asano T, Zheng R, Asano T, et al. Increased serum leptin levels and over expression of leptin receptors are associated with the invasion and progression of renal cell carcinoma. J Urol. 2006;176(4 Pt 1):1631–5. doi: 10.1016/j.juro.2006.06.039.PubMedCrossRefGoogle Scholar
  227. 227.
    Goktas S, Yilmaz MI, Caglar K, Sonmez A, Kilic S, Bedir S. Prostate cancer and adiponectin. Urology. 2005;65(6):1168–72. doi: 10.1016/j.urology.2004.12.053.PubMedCrossRefGoogle Scholar
  228. 228.
    Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe DM, et al. Adiponectin and breast cancer risk. J Clin Endocrinol Metabol. 2004;89(3):1102–7. doi: 10.1210/jc.2003-031804.CrossRefGoogle Scholar
  229. 229.
    Soliman PT, Wu D, Tortolero-Luna G, Schmeler KM, Slomovitz BM, Bray MS, et al. Association between adiponectin, insulin resistance, and endometrial cancer. Cancer. 2006;106(11):2376–81. doi: 10.1002/cncr.21866.PubMedCrossRefGoogle Scholar
  230. 230.
    Lukanova A, Söderberg S, Kaaks R, Jellum E, Stattin P. Serum adiponectin is not associated with risk of colorectal cancer. Cancer Epidemiol Biomark Prev. 2006;15(2):401–2. doi: 10.1158/1055-9965.EPI-05-0836.CrossRefGoogle Scholar
  231. 231.
    Otake S, Takeda H, Suzuki Y, Fukui T, Watanabe S, Ishihama K, et al. Association of visceral fat accumulation and plasma adiponectin with colorectal adenoma: evidence for participation of insulin resistance. Clin Cancer Res. 2005;11(10):3642–6. doi: 10.1158/1078-0432.CCR-04-1868.PubMedCrossRefGoogle Scholar
  232. 232.
    Wei EK, Giovannucci E, Fuchs CS, Willett WC, Mantzoros CS. Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst. 2005;97(22):1688–94. doi: 10.1093/jnci/dji376.PubMedCrossRefGoogle Scholar
  233. 233.
    Yamaji T, Iwasaki M, Sasazuki S, Tsugane S. Interaction between adiponectin and leptin influences the risk of colorectal adenoma. Cancer Res. 2010;70(13):5430–7. doi: 10.1158/0008-5472.CAN-10-0178.PubMedCrossRefGoogle Scholar
  234. 234.
    Chang M-C, Chang Y-T, Su T-C, Yang W-S, Chen C-L, Tien Y-W, et al. Adiponectin as a potential differential marker to distinguish pancreatic cancer and chronic pancreatitis. Pancreas. 2007;35(1):16–21. doi: 10.1097/MPA.0b013e3180547709.PubMedCrossRefGoogle Scholar
  235. 235.
    Dalamaga M, Migdalis I, Fargnoli JL, Papadavid E, Bloom E, Mitsiades N, et al. Pancreatic cancer expresses adiponectin receptors and is associated with hypoleptinemia and hyperadiponectinemia: a case-control study. Cancer Causes Control. 2009;20(5):625–33. doi: 10.1007/s10552-008-9273-z.PubMedCrossRefGoogle Scholar
  236. 236.
    Stolzenberg-Solomon RZ, Weinstein S, Pollak M, Tao Y, Taylor PR, Virtamo J, Albanes D. Prediagnostic adiponectin concentrations and pancreatic cancer risk in male smokers. Am J Epidemiol. 2008;168(9):1047–55. doi: 10.1093/aje/kwn221.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Horiguchi A, Ito K, Sumitomo M, Kimura F, Asano T, Hayakawa M. Decreased serum adiponectin levels in patients with metastatic renal cell carcinoma. Jpn J Clin Oncol. 2008;38(2):106–11. doi: 10.1093/jjco/hym158.PubMedCrossRefGoogle Scholar
  238. 238.
    Pinthus JH, Kleinmann N, Tisdale B, Chatterjee S, Lu J-P, Gillis A, et al. Lower plasma adiponectin levels are associated with larger tumor size and metastasis in clear-cell carcinoma of the kidney. Eur Urol. 2008;54(4):866–73. doi: 10.1016/j.eururo.2008.02.044.PubMedCrossRefGoogle Scholar
  239. 239.
    Spyridopoulos TN, Petridou ET, Skalkidou A, Dessypris N, Chrousos GP, Mantzoros CS, Obesity and Cancer Oncology Group. Low adiponectin levels are associated with renal cell carcinoma: a case-control study. Int J Cancer. 2007;120(7):1573–8. doi: 10.1002/ijc.22526.PubMedCrossRefGoogle Scholar
  240. 240.
    Park JT, Yoo T-H, Chang TI, Lee DH, Lee JH, Lee JE, et al. Insulin resistance and lower plasma adiponectin increase malignancy risk in nondiabetic continuous ambulatory peritoneal dialysis patients. Metabolism. 2011;60(1):121–6. doi: 10.1016/j.metabol.2010.02.006.PubMedCrossRefGoogle Scholar
  241. 241.
    Tian W, Zhu Y, Wang Y, Teng F, Zhang H, Liu G, et al. Visfatin, a potential biomarker and prognostic factor for endometrial cancer. Gynecol Oncol. 2013;129(3):505–12. doi: 10.1016/j.ygyno.2013.02.022.PubMedCrossRefGoogle Scholar
  242. 242.
    Chen M, Wang Y, Li Y, Zhao L, Ye S, Wang S, et al. Association of plasma visfatin with risk of colorectal cancer: an observational study of Chinese patients. Asia-Pacific J Clin Oncol. 2013;n/a–n/a. doi: 10.1111/ajco.12090.
  243. 243.
    Nakajima TE, Yamada Y, Hamano T, Furuta K, Gotoda T, Katai H, et al. Adipocytokine levels in gastric cancer patients: resistin and visfatin as biomarkers of gastric cancer. J Gastroenterol. 2009;44(7):685–90. doi: 10.1007/s00535-009-0063-5.PubMedCrossRefGoogle Scholar
  244. 244.
    Dossus L, Becker S, Rinaldi S, Lukanova A, Tjonneland A, Olsen A, et al. Tumor necrosis factor (TNF)-α, soluble TNF receptors and endometrial cancer risk: the EPIC study. Int J Cancer. 2011;129(8):2032–7. doi: 10.1002/ijc.25840.PubMedCrossRefGoogle Scholar
  245. 245.
    Michalaki V, Syrigos K, Charles P, Waxman J. Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer. 2004;90(12):2312–6. doi: 10.1038/sj.bjc.6601814.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Pfitzenmaier J, Vessella R, Higano CS, Noteboom JL, Wallace D, Corey E. Elevation of cytokine levels in cachectic patients with prostate carcinoma. Cancer. 2003;97(5):1211–6. doi: 10.1002/cncr.11178.PubMedCrossRefGoogle Scholar
  247. 247.
    Dossus L, Rinaldi S, Becker S, Lukanova A, Tjonneland A, Olsen A, et al. Obesity, inflammatory markers, and endometrial cancer risk: a prospective case-control study. Endocr Relat Cancer. 2010;17(4):1007–19. doi: 10.1677/ERC-10-0053.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Purohit A, Reed MJ. Regulation of estrogen synthesis in postmenopausal women. Steroids. 2002;67(12):979–83.PubMedCrossRefGoogle Scholar
  249. 249.
    Twillie DA, Eisenberger MA, Carducci MA, Hseih WS, Kim WY, Simons JW. Interleukin-6: a candidate mediator of human prostate cancer morbidity. Urology. 1995;45(3):542–9. doi: 10.1016/S0090-4295(99)80034-X.PubMedCrossRefGoogle Scholar
  250. 250.
    Ludwig H, Nachbaur DM, Fritz E, Krainer M, Huber H. Interleukin-6 is a prognostic factor in multiple myeloma. Blood. 1991;77(12):2794–5.PubMedGoogle Scholar
  251. 251.
    Blay JY, Negrier S, Combaret V, Attali S, Goillot E, Merrouche Y, et al. Serum level of interleukin 6 as a prognosis factor in metastatic renal cell carcinoma. Cancer Res. 1992;52(12):3317–22.PubMedGoogle Scholar
  252. 252.
    Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Boissière F, Laune D, et al. Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res. 2007;9(1):R15. doi: 10.1186/bcr1648.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Salgado R, Junius S, Benoy I, Van Dam P, Vermeulen P, Van Marck E, et al. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer. 2003;103(5):642–6. doi: 10.1002/ijc.10833.PubMedCrossRefGoogle Scholar
  254. 254.
    Barak V, Kalickman I, Nisman B, Farbstein H, Fridlender ZG, Baider L, et al. Changes in cytokine production of breast cancer patients treated with interferons. Cytokine. 1998;10(12):977–83. doi: 10.1006/cyto.1998.0378.PubMedCrossRefGoogle Scholar
  255. 255.
    Ashizawa N, Yahata T, Quan J, Adachi S, Yoshihara K, Tanaka K. Serum leptin-adiponectin ratio and endometrial cancer risk in postmenopausal female subjects. Gynecol Oncol. 2010;119(1):65–9. doi: 10.1016/j.ygyno.2010.07.007.PubMedCrossRefGoogle Scholar
  256. 256.
    Chen D-C, Chung Y-F, Yeh Y-T, Chaung H-C, Kuo F-C, Fu O-Y, et al. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett. 2006;237(1):109–14. doi: 10.1016/j.canlet.2005.05.047.PubMedCrossRefGoogle Scholar
  257. 257.
    Cleary MP, Ray A, Rogozina OP, Dogan S, Grossmann ME. Targeting the adiponectin:leptin ratio for postmenopausal breast cancer prevention. Front Biosci (Schol Ed). 2009;1:329–57.CrossRefGoogle Scholar
  258. 258.
    Mirza S, Qu H-Q, Li Q, Martinez PJ, Rentfro AR, McCormick JB, Fisher-Hoch SP. Adiponectin/leptin ratio and metabolic syndrome in a Mexican American population. Clin Invest Med. 2011;34(5):E290.PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Garofalo C, Koda M, Cascio S, Sulkowska M, Kanczuga-Koda L, Golaszewska J, et al. Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clin Cancer Res. 2006;12(5):1447–53. doi: 10.1158/1078-0432.CCR-05-1913.PubMedCrossRefGoogle Scholar
  260. 260.
    Révillion F, Charlier M, Lhotellier V, Hornez L, Giard S, Baranzelli M-C, et al. Messenger RNA expression of leptin and leptin receptors and their prognostic value in 322 human primary breast cancers. Clin Cancer Res. 2006;12(7 Pt 1):2088–94. doi: 10.1158/1078-0432.CCR-05-1904.PubMedCrossRefGoogle Scholar
  261. 261.
    Koda M, Sulkowska M, Kanczuga-Koda L, Surmacz E, Sulkowski S. Overexpression of the obesity hormone leptin in human colorectal cancer. J Clin Pathol. 2007;60(8):902–6. doi: 10.1136/jcp.2006.041004.PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Cheng S-P, Chi C-W, Tzen C-Y, Yang T-L, Lee J-J, Liu T-P, Liu C-L. Clinicopathologic significance of leptin and leptin receptor expressions in papillary thyroid carcinoma. Surgery. 2010;147(6):847–53. doi: 10.1016/j.surg.2009.11.004.PubMedCrossRefGoogle Scholar
  263. 263.
    Uddin S, Bavi P, Siraj AK, Ahmed M, Al-Rasheed M, Hussain AR, et al. Leptin-R and its association with PI3K/AKT signaling pathway in papillary thyroid carcinoma. Endocr Relat Cancer. 2010;17(1):191–202. doi: 10.1677/ERC-09-0153.PubMedCrossRefGoogle Scholar
  264. 264.
    Barb D, Williams CJ, Neuwirth AK, Mantzoros CS. Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence. Am J Clin Nutr. 2007;86(3):s858–66.PubMedGoogle Scholar
  265. 265.
    Lee YC, Yang YH, Su JH, Chang HL, Hou MF, Yuan SSF. High visfatin expression in breast cancer tissue is associated with poor survival. Cancer Epidemiol Biomark Prev. 2011;20(9):1892–901. doi: 10.1158/1055-9965.EPI-11-0399.CrossRefGoogle Scholar
  266. 266.
    Folgueira MAAK, Carraro DM, Brentani H, Patrão DFDC, Barbosa EM, Netto MM, et al. Gene expression profile associated with response to doxorubicin-based therapy in breast cancer. Clin Cancer Res. 2005;11(20):7434–43. doi: 10.1158/1078-0432.CCR-04-0548.PubMedCrossRefGoogle Scholar
  267. 267.
    Foekens JA, Look MP, Peters HA, van Putten WLJ, Portengen H, Klijn JGM. Urokinase-type plasminogen activator and its inhibitor PAI-1: predictors of poor response to tamoxifen therapy in recurrent breast cancer. J Natl Cancer Inst. 1995;87(10):751–6. doi: 10.1093/jnci/87.10.751.PubMedCrossRefGoogle Scholar
  268. 268.
    Grøndahl-Hansen J, Christensen IJ, Rosenquist C, Brünner N, Mouridsen HT, Danø K, Blichert-Toft M. High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res. 1993;53(11):2513–21.PubMedGoogle Scholar
  269. 269.
    Cleveland RJ, Gammon MD, Long C-M, Gaudet MM, Eng SM, Teitelbaum SL, et al. Common genetic variations in the LEP and LEPR genes, obesity and breast cancer incidence and survival. Breast Cancer Res Treat. 2010;120(3):745–52. doi: 10.1007/s10549-009-0503-1.PubMedCrossRefGoogle Scholar
  270. 270.
    Khan S, Shukla S, Sinha S, Meeran SM. Role of adipokines and cytokines in obesity-associated breast cancer: therapeutic targets. Cytokine Growth Factor Rev. 2013;24(6):503–13. doi: 10.1016/j.cytogfr.2013.10.001.PubMedCrossRefGoogle Scholar
  271. 271.
    Liu C-L, Chang Y-C, Cheng S-P, Chern S-R, Yang T-L, Lee J-J, et al. The roles of serum leptin concentration and polymorphism in leptin receptor gene at codon 109 in breast cancer. Oncology. 2007;72(1–2):75–81. doi: 10.1159/000111097.PubMedCrossRefGoogle Scholar
  272. 272.
    Terrasi M, Fiorio E, Mercanti A, Koda M, Moncada CA, Sulkowski S, et al. Functional analysis of the -2548G/A leptin gene polymorphism in breast cancer cells. Int J Cancer. 2009;125(5):1038–44. doi: 10.1002/ijc.24372.PubMedCrossRefGoogle Scholar
  273. 273.
    Castelló R, España F, Vázquez C, Fuster C, Almenar SM, Aznar J, Estellés A. Plasminogen activator inhibitor-1 4G/5G polymorphism in breast cancer patients and its association with tissue PAI-1 levels and tumor severity. Thromb Res. 2006;117(5):487–92. doi: 10.1016/j.thromres.2005.03.025.PubMedCrossRefGoogle Scholar
  274. 274.
    Lei H, Hemminki K, Johansson R, Altieri A, Enquist K, Henriksson R, et al. PAI-1-675 4G/5G polymorphism as a prognostic biomarker in breast cancer. Breast Cancer Res Treat. 2008;109(1):165–75. doi: 10.1007/s10549-007-9635-3.PubMedCrossRefGoogle Scholar
  275. 275.
    Vairaktaris E, Yapijakis C, Serefoglou Z, Vylliotis A, Ries J, Nkenke E, et al. Plasminogen activator inhibitor-1 polymorphism is associated with increased risk for oral cancer. Oral Oncol. 2006;42(9):888–92. doi: 10.1016/j.oraloncology.2005.12.005.PubMedCrossRefGoogle Scholar
  276. 276.
    Sciacca FL, Ciusani E, Silvani A, Corsini E, Frigerio S, Pogliani S, et al. Genetic and plasma markers of venous thromboembolism in patients with high grade glioma. Clin Cancer Res. 2004;10(4):1312–7.PubMedCrossRefGoogle Scholar
  277. 277.
    Shen C, Sun H, Sun D, Xu L, Zhang X, Liu A, et al. Polymorphisms of tumor necrosis factor-alpha and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2011;126(3):763–70. doi: 10.1007/s10549-010-1184-5.PubMedCrossRefGoogle Scholar
  278. 278.
    Lu P-H, Tang Y, Li C, Shen W, Ji L, Guo Y-J, Tao G-Q. Meta-analysis of association of tumor necrosis factor alpha-308 gene promoter polymorphism with gastric cancer. Zhonghua Yu Fang Yi Xue Za Zhi. 2010;44(3):209–14.PubMedGoogle Scholar
  279. 279.
    Yang Y, Luo C, Feng R, Bi S. The TNF-α, IL-1B and IL-10 polymorphisms and risk for hepatocellular carcinoma: a meta-analysis. J Cancer Res Clin Oncol. 2011;137(6):947–52. doi: 10.1007/s00432-010-0959-8.PubMedCrossRefGoogle Scholar
  280. 280.
    Iacopetta B, Grieu F, Joseph D. The -174 G/C gene polymorphism in interleukin-6 is associated with an aggressive breast cancer phenotype. Br J Cancer. 2004;90(2):419–22. doi: 10.1038/sj.bjc.6601545.PubMedPubMedCentralCrossRefGoogle Scholar
  281. 281.
    Smith KC, Bateman AC, Fussell HM, Howell WM. Cytokine gene polymorphisms and breast cancer susceptibility and prognosis. Eur J Immunogenet. 2004;31(4):167–73. doi: 10.1111/j.1365-2370.2004.00462.x.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
  3. 3.Department of Microbiology, Immunology, and Cancer BiologyThe University of VirginiaCharlottesvilleUSA
  4. 4.Emily Couric Clinical Cancer CenterThe University of VirginiaCharlottesvilleUSA

Personalised recommendations