Skip to main content

The Function and Diagnostic Potential of Adipocyte-Derived Factors in the Tumor Microenvironment

  • Chapter
  • First Online:
Biomarkers of the Tumor Microenvironment
  • 1243 Accesses

Abstract

Solid tumors resemble dysfunctional “organs” comprised of malignant cancer cells and heterogeneous components of the tumor microenvironment (TME). The TME includes extracellular matrix and non-cancer stromal cells (e.g., fibroblasts, immune cells, and vascular cells) that may support cancer progression. Adipocytes, despite being the most abundant cell type in certain tumor types (e.g., breast cancer), are often overlooked in the TME. It is now well established that the TME plays an important role in tumor growth and metastasis, and while multiple studies have contributed to our understanding of the TME, relatively little is known about how adipocytes, despite their role as major sources of paracrine and endocrine factors, influence tumor progression. In this chapter, we will briefly introduce the TME and its various components and then provide a comprehensive analysis of the roles of tumor-associated adipocytes and adipokines during solid tumor development. We will also highlight the potential diagnostic/prognostic value of adipose tissue and adipose-derived factors in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. doi:10.3322/caac.21254.

    Article  PubMed  Google Scholar 

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10.3322/caac.21262.

    Article  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  4. Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 2010;18(6):884–901. doi:10.1016/j.devcel.2010.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401. doi:10.1038/nrc1877.

    Article  CAS  PubMed  Google Scholar 

  6. Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci. 2010;15:166–79.

    Article  CAS  Google Scholar 

  7. Disis ML. Immune regulation of cancer. J Clin Oncol. 2010;28(29):4531–8. doi:10.1200/JCO.2009.27.2146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roorda BD, ter Elst A, Kamps WA, de Bont ESJM. Bone marrow-derived cells and tumor growth: contribution of bone marrow-derived cells to tumor micro-environments with special focus on mesenchymal stem cells. Crit Rev Oncol/Hematol. 2009;69(3):187–98. doi:10.1016/j.critrevonc.2008.06.004.

    Article  Google Scholar 

  9. Dudley AC. Tumor endothelial cells. Cold Spring Harb Perspect Med. 2012;2(3):a006536. doi:10.1101/cshperspect.a006536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22. doi:10.1016/j.ccr.2012.02.022.

    Article  CAS  PubMed  Google Scholar 

  11. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216–9. doi:10.1126/science.1176009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406. doi:10.1083/jcb.201102147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4(2):165–78. doi:10.1242/dmm.004077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu C-C, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and Accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25(6):719–34. doi:10.1016/j.ccr.2014.04.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25(6):735–47. doi:10.1016/j.ccr.2014.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Terai S, Fushida S, Tsukada T, Kinoshita J, Oyama K, Okamoto K, et al. Bone marrow derived “fibrocytes” contribute to tumor proliferation and fibrosis in gastric cancer. Gastric Cancer. 2014;18(2):306–13. doi:10.1007/s10120-014-0380-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhang H, Maric I, DiPrima MJ, Khan J, Orentas RJ, Kaplan RN, Mackall CL. Fibrocytes represent a novel MDSC subset circulating in patients with metastatic cancer. Blood. 2013;122(7):1105–13. doi:10.1182/blood-2012-08-449413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Deventer HW, Palmieri DA, Wu QP, McCook EC, Serody JS. Circulating fibrocytes prepare the lung for cancer metastasis by recruiting Ly-6C+ monocytes via CCL2. J Immunol. 2013;190(9):4861–7. doi:10.4049/jimmunol.1202857.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sounni NE, Noel A. Targeting the tumor microenvironment for cancer therapy. Clin Chem. 2013;59(1):85–93. doi:10.1373/clinchem.2012.185363.

    Article  CAS  PubMed  Google Scholar 

  20. Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res. 2006;66(23):11089–93. doi:10.1158/0008-5472.CAN-06-2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820–7. doi:10.1038/nature04186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maher J, Davies ET. Targeting cytotoxic T lymphocytes for cancer immunotherapy. 2004;1–5. doi:10.1038/sj.bjc.6602022.

  23. Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother. 2005;54(8):721–8. doi:10.1007/s00262-004-0653-2.

    Article  CAS  PubMed  Google Scholar 

  24. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Investig. 2012;122(3):787–95. doi:10.1172/JCI59643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol. 2008;66(1):1–9. doi:10.1016/j.critrevonc.2007.07.004.

    Article  PubMed  Google Scholar 

  26. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus ‘N2’ TAN. Cancer Cell. 2009;16(3):183–94. doi:10.1016/j.ccr.2009.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cao Y, Arbiser J, D'Amato RJ, D'Amore PA, Ingber DE, Kerbel R, et al. Forty-year journey of angiogenesis translational research. Sci Transl Med. 2011;3(114):114rv3. doi:10.1126/scitranslmed.3003149.

    Article  PubMed  Google Scholar 

  28. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29(6):15–8. doi:10.1016/S0093-7754(02)70065-1.

    Article  CAS  PubMed  Google Scholar 

  29. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64. doi:10.1016/S0092-8674(00)80108-7.

    Article  CAS  PubMed  Google Scholar 

  30. Liu Q, Hu T, He L, Huang X, Tian X, Zhang H, et al. Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat Commun. 2015;6:1–12. doi:10.1038/ncomms7020.

    CAS  Google Scholar 

  31. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000;156(4):1363–80. doi:10.1016/S0002-9440(10)65006-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiao L, Harrell JC, Perou CM, Dudley AC. Identification of a stable molecular signature in mammary tumor endothelial cells that persists in vitro. Angiogenesis. 2013;17(3):511–8. doi:10.1007/s10456-013-9409-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Bustos M, Martínez JA, Moreno-Aliaga MJ. Role of obesity-associated dysfunctional adipose tissue in cancer: a molecular nutrition approach. Biochim Biophys Acta. 2011;1807(6):664–78. doi:10.1016/j.bbabio.2010.11.004.

    Article  CAS  PubMed  Google Scholar 

  34. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91. doi:10.1038/nrc1408.

    Article  CAS  PubMed  Google Scholar 

  35. De Pergola G, Silvestris F. Obesity as a major risk factor for cancer. J Obes. 2013;2013:291546.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38. doi:10.1056/NEJMoa021423.

    Article  PubMed  Google Scholar 

  37. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78. doi:10.1016/S0140-6736(08)60269-X.

    Article  PubMed  Google Scholar 

  38. O’Rourke RW. Obesity and cancer. In: Metabolic syndrome and diabetes. New York: Springer; 2016. p. 111–23. doi:10.1007/978-1-4939-3220-7_8.

    Chapter  Google Scholar 

  39. Geliebter A, Atalayer D, Flancbaum L, Gibson CD. Comparison of body adiposity index (BAI) and BMI with estimations of % body fat in clinically severe obese women. Obesity. 2013;21(3):493–8. doi:10.1002/oby.20264.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Moon H-G, Ju Y-T, Jeong C-Y, Jung E-J, Lee Y-J, Hong S-C, et al. Visceral obesity may affect oncologic outcome in patients with colorectal cancer. Ann Surg Oncol. 2008;15(7):1918–22. doi:10.1245/s10434-008-9891-4.

    Article  PubMed  Google Scholar 

  41. Choi Y, Park B, Jeong BC, Seo SI, Jeon SS, Choi HY, et al. Body mass index and survival in patients with renal cell carcinoma: a clinical-based cohort and meta-analysis. Int J Cancer. 2012;132(3):625–34. doi:10.1002/ijc.27639.

    Article  PubMed  CAS  Google Scholar 

  42. Wang J, Myles B, Wei C, Chang JY, Hofstetter WL, Ajani JA, et al. Obesity and outcomes in patients treated with chemoradiotherapy for esophageal carcinoma. Dis Esophagus. 2013a;27(2):168–75. doi:10.1111/dote.12074.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ablamunits V, Cohen Y, Brazee IB, Gaetz HP, Vinson C, Klebanov S. Susceptibility to induced and spontaneous carcinogenesis is increased in fatless A-ZIP/F-1 but not in obese ob/ob mice. Cancer Res. 2006;66(17):8897–902. doi:10.1158/0008-5472.CAN-05-4679.

    Article  CAS  PubMed  Google Scholar 

  44. Nunez NP. Accelerated tumor formation in a fatless mouse with type 2 diabetes and inflammation. Cancer Res. 2006;66(10):5469–76. doi:10.1158/0008-5472.CAN-05-4102.

    Article  CAS  PubMed  Google Scholar 

  45. Hursting SD, Nunez NP, Varticovski L, Vinson C. The obesity-cancer link: lessons learned from a fatless mouse. Cancer Res. 2007;67(6):2391–3. doi:10.1158/0008-5472.CAN-06-4237.

    Article  CAS  PubMed  Google Scholar 

  46. Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes. 2003;52(7):1779–85. doi:10.2337/diabetes.52.7.1779.

    Article  CAS  PubMed  Google Scholar 

  47. Heston WE, Vlahakis G. Influence of the Ay gene on mammary-gland tumors, hepatomas, and normal growth in mice. Oxford University Press; 1961. doi:10.1093/jnci/26.4.969.

  48. Heston WE, Vlahakis G. C3H-Avy—a high hepatoma and high mammary tumor strain of mice. J Natl Cancer Inst. 1968;40(6):1161–6. doi:10.1093/jnci/40.6.1161.

    CAS  PubMed  Google Scholar 

  49. Wolff GL, Kodell RL, Cameron AM, Medina D. Accelerated appearance of chemically induced mammary carcinomas in obese yellow (Avy/A) (BALB/c X VY) F1 hybrid mice. J Toxicol Environ Health. 1982;10(1):131–42. doi:10.1080/15287398209530237.

    Article  CAS  PubMed  Google Scholar 

  50. Wolff GL, Medina D, Umholtz RL. Manifestation of hyperplastic alveolar nodules and mammary tumors in “viable yellow” and non-yellow mice. J Natl Cancer Inst. 1979;63(3):781–5. doi:10.1093/jnci/63.3.781.

    Article  CAS  PubMed  Google Scholar 

  51. Wolff GL, ROBERTS DW, Mountjoy KG. Physiological consequences of ectopic agouti gene expression: the yellow obese mouse syndrome. Physiol Genomics. 1999;1(3):151–63.

    Article  CAS  PubMed  Google Scholar 

  52. Waxler SH, Tabar P, Melcher LR. Obesity and the time of appearance of spontaneous mammary carcinoma in C3H mice. Cancer Res. 1953;13(3):276–8.

    CAS  PubMed  Google Scholar 

  53. Waxler SH, Leef MF. Augmentation of mammary tumors in castrated obese C3H mice. Cancer Res. 1966;26(5):860–2.

    CAS  PubMed  Google Scholar 

  54. Núñez NP, Perkins SN, Smith NCP, Berrigan D, Berendes DM, Varticovski L, et al. Obesity Accelerates mouse mammary tumor growth in the absence of ovarian hormones. Nutr Cancer. 2008;60(4):534–41. doi:10.1080/01635580801966195.

    Article  PubMed  CAS  Google Scholar 

  55. Algire C, Amrein L, Zakikhani M, Panasci L, Pollak M. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocr Relat Cancer. 2010;17(2):351–60. doi:10.1677/ERC-09-0252.

    Article  CAS  PubMed  Google Scholar 

  56. Teraoka N, Mutoh M, Takasu S, Ueno T, Nakano K, Takahashi M, et al. High susceptibility to azoxymethane-induced colorectal carcinogenesis in obese KK-Ay mice. Int J Cancer. 2011;129(3):528–35. doi:10.1002/ijc.25711.

    Article  CAS  PubMed  Google Scholar 

  57. Yakar S, Núñez NP, Pennisi P, Brodt P, Sun H, Fallavollita L, et al. Increased tumor growth in mice with diet-induced obesity: impact of ovarian hormones. Endocrinology. 2013;147(12):5826–34. doi:10.1210/en.2006-0311.

    Article  CAS  Google Scholar 

  58. Hill-Baskin AE, Markiewski MM, Buchner DA, Shao H, DeSantis D, Hsiao G, et al. Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum Mol Genet. 2009;18(16):2975–88. doi:10.1093/hmg/ddp236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Park EJ, Lee JH, Yu G-Y, He G, Ali SR, Holzer RG, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140(2):197–208. doi:10.1016/j.cell.2009.12.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Blando J, Moore T, Hursting S, Jiang G, Saha A, Beltran L, et al. Dietary energy balance modulates prostate cancer progression in Hi-Myc mice. Cancer Prev Res (Phila). 2011;4(12):2002–14. doi:10.1158/1940-6207.CAPR-11-0182.

    Article  CAS  Google Scholar 

  61. Bonorden MJL, Grossmann ME, Ewing SA, Rogozina OP, Ray A, Nkhata KJ, et al. Growth and progression of TRAMP prostate tumors in relationship to diet and obesity. Prostate Cancer. 2012;2012(5):1–13. doi:10.1155/2012/543970.

    Article  CAS  Google Scholar 

  62. Laurent V, rard AGE, Mazerolles C, Le Gonidec S, Toulet AEL, Nieto L, et al. Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat Commun. 2016;7:1–15. doi:10.1038/ncomms10230.

    Google Scholar 

  63. Llaverias G, Danilo C, Wang Y, Witkiewicz AK, Daumer K, Lisanti MP, Frank PG. A western-type diet accelerates tumor progression in an autochthonous mouse model of prostate cancer. Am J Pathol. 2010;177(6):3180–91. doi:10.2353/ajpath.2010.100568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dennis LK, Lowe JB, Lynch CF, Alavanja MCR. Cutaneous melanoma and obesity in the agricultural health study. Ann Epidemiol. 2008;18(3):214–21. doi:10.1016/j.annepidem.2007.09.003.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dinkova-Kostova AT, Fahey JW, Jenkins SN, Wehage SL, Talalay P. Rapid body weight gain increases the risk of UV radiation–induced skin carcinogenesis in SKH-1 hairless mice. Nutr Res. 2008;28(8):539–43. doi:10.1016/j.nutres.2008.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bjørndal B, Burri L, Staalesen V, Skorve J. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes. 2011;2011:490650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Meunier P, Aaron J, Edouard C, VlGNON G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue: a quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971;80:147.

    Article  CAS  PubMed  Google Scholar 

  68. Rutkowski JM, Stern JH, Scherer PE. Beyond the cell: the cell biology of fat expansion. J Cell Biol. 2015;208(5):501–12. doi:10.1083/jcb.201409063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Phys Cell Phys. 2012;302(2):C327–59. doi:10.1152/ajpcell.00168.2011.

    Article  CAS  Google Scholar 

  70. Zhang Y, Daquinag A, Traktuev DO, Amaya-Manzanares F, Simmons PJ, March KL, et al. White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Res. 2009;69(12):5259–66. doi:10.1158/0008-5472.CAN-08-3444.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Y, Daquinag AC, Amaya-Manzanares F, Sirin O, Tseng C, Kolonin MG. Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Res. 2012;72(20):5198–208. doi:10.1158/0008-5472.CAN-12-0294.

    Article  CAS  PubMed  Google Scholar 

  72. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Publ Group. 2013;10(1):24–36. doi:10.1038/nrendo.2013.204.

    Google Scholar 

  73. Hassan M, Latif N, Yacoub M. Adipose tissue: friend or foe? Nat Rev Cardiol. 2012;9(12):689–702. doi:10.1038/nrcardio.2012.148.

    Article  CAS  PubMed  Google Scholar 

  74. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17. doi:10.1056/NEJMoa0810780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nedergaard J, Cannon B. The browning of white adipose tissue: some burning issues. Cell Metab. 2014;20(3):396–407. doi:10.1016/j.cmet.2014.07.005.

    Article  CAS  PubMed  Google Scholar 

  76. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19(10):1252–63. doi:10.1038/nm.3361.

    Article  CAS  PubMed  Google Scholar 

  77. Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang A-H, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–76. doi:10.1016/j.cell.2012.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rosenwald M, Perdikari A, Rülicke T, Wolfrum C. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol. 2013;15(6):659–67. doi:10.1038/ncb2740.

    Article  CAS  PubMed  Google Scholar 

  79. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454(7207):961–7. doi:10.1038/nature07182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci. 2007;104(11):4401–6. doi:10.1073/pnas.0610615104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab. 2010;298(6):E1244–53. doi:10.1152/ajpendo.00600.2009.

    Article  CAS  PubMed  Google Scholar 

  82. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol. 2000;279(3):C670–81. doi:10.1292/jvms.61.403.

    Article  CAS  PubMed  Google Scholar 

  83. Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med. 2013b;19(10):1338–44. doi:10.1038/nm.3324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci U S A. 2011;108(1):143–8. doi:10.1073/pnas.1010929108.

    Article  CAS  PubMed  Google Scholar 

  85. Lee Y-H, Petkova AP, Mottillo EP, Granneman JG. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab. 2012;15(4):480–91. doi:10.1016/j.cmet.2012.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kolonin MG. Adipose tissue and cancer. 2013. doi:10.1007/978-1-4614-7660-3.

  87. Nakajima I, Muroya S, Tanabe RI, Chikuni K. Positive effect of collagen V and VI on triglyceride accumulation during differentiation in cultures of bovine intramuscular adipocytes. Differentiation. 2002;70(2–3):84–91. doi:10.1046/j.1432-0436.2002.700203.x.

    Article  CAS  PubMed  Google Scholar 

  88. Sillat T, Saat R, Pöllänen R, Hukkanen M, Takagi M, Konttinen YT. Basement membrane collagen type IV expression by human mesenchymal stem cells during adipogenic differentiation. J Cell Mol Med. 2012;16(7):1485–95. doi:10.1111/j.1582-4934.2011.01442.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tan J, Buache E, Chenard M-P, Dali-Youcef N, Rio M-C. Adipocyte is a non-trivial, dynamic partner of breast cancer cells. Int J Dev Biol. 2011;55(7–8-9):851–9. doi:10.1387/ijdb.113365jt.

    Article  PubMed  Google Scholar 

  90. Lefebvre O, Wolf C, Limacher JM, Hutin P, Wendling C, LeMeur M, et al. The breast cancer-associated stromelysin-3 gene is expressed during mouse mammary gland apoptosis. J Cell Biol. 1992;119(4):997–1002. doi:10.1083/jcb.119.4.997.

    Article  CAS  PubMed  Google Scholar 

  91. Wagner M, Bjerkvig R, Wiig H, Dudley AC. Loss of adipocyte specification and necrosis augment tumor-associated inflammation. Adipocytes. 2013;2(3):176–83. doi:10.4161/adip.24472.

    Article  Google Scholar 

  92. Wagner M, Bjerkvig R, Wiig H, Melero-Martin JM, Lin R-Z, Klagsbrun M, Dudley AC. Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis. Angiogenesis. 2012;15(3):481–95. doi:10.1007/s10456-012-9276-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Andarawewa KL, Motrescu ER, Chenard M-P, Gansmuller A, Stoll I, Tomasetto C, Rio M-C. Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res. 2005;65(23):10862–71. doi:10.1158/0008-5472.CAN-05-1231.

    Article  CAS  PubMed  Google Scholar 

  94. Motrescu ER, Rio M-C. Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle. Biol Chem. 2008;389(8):1037–41. doi:10.1515/BC.2008.110.

    Article  CAS  PubMed  Google Scholar 

  95. Gordon S. Macrophage heterogeneity and tissue lipids. J Clin Investig. 2007;117(1):89–4. doi:10.1172/JCI30992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503. doi:10.1038/nm.2492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Elliott BE, Tam SP, Dexter D, Chen ZQ. Capacity of adipose tissue to promote growth and metastasis of a murine mammary carcinoma: effect of estrogen and progesterone. Int J Cancer. 1992;51(3):416–24. doi:10.1002/ijc.2910510314.

    Article  CAS  PubMed  Google Scholar 

  98. Iyengar P, Combs TP, Shah SJ, Gluon-Evans V, Pollard JW, Albanese C, et al. Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene. 2003;22(41):6408–23. doi:10.1038/sj.onc.1206737.

    Article  CAS  PubMed  Google Scholar 

  99. Manabe Y, Toda S, Miyazaki K, Sugihara H. Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer–stromal cell interactions. J Pathol. 2003;201(2):221–8. doi:10.1002/path.1430.

    Article  PubMed  Google Scholar 

  100. Amemori S, Ootani A, Aoki S, Fujise T, Shimoda R, Kakimoto T, et al. Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am J Physiol Gastrointest Liver Physiol. 2007;292(3):G923–9. doi:10.1152/ajpgi.00145.2006.

    Article  CAS  PubMed  Google Scholar 

  101. Tokuda Y, Satoh Y, Fujiyama C, Toda S, Sugihara H, Masaki Z. Prostate cancer cell growth is modulated by adipocyte-cancer cell interaction. BJU Int. 2003;91(7):716–20. doi:10.1046/j.1464-410X.2003.04218.x.

    Article  CAS  PubMed  Google Scholar 

  102. White PB, True EM, Ziegler KM, Wang SS, Swartz-Basile DA, Pitt HA, Zyromski NJ. Insulin, leptin, and tumoral adipocytes promote murine pancreatic cancer growth. J Gastrointest Surg. 2010;14(12):1888–94. doi:10.1007/s11605-010-1349-x.

    Article  PubMed  Google Scholar 

  103. Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71(7):2455–65. doi:10.1158/0008-5472.CAN-10-3323.

    Article  CAS  PubMed  Google Scholar 

  104. Bochet L, Meulle A, Imbert S, Salles B, Valet P, Muller C. Cancer-associated adipocytes promotes breast tumor radioresistance. Biochem Biophys Res Commun. 2011;411(1):102–6. doi:10.1016/j.bbrc.2011.06.101.

    Article  CAS  PubMed  Google Scholar 

  105. Bochet L, Lehuede C, Dauvillier S, Wang YY, Dirat B, Laurent V, et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 2013;73(18):5657–68. doi:10.1158/0008-5472.CAN-13-0530.

    Article  CAS  PubMed  Google Scholar 

  106. Berry R, Rodeheffer MS. Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol. 2013;15(3):302–8. doi:10.1038/ncb2696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Brown MD, Hart CA, Gazi E, Bagley S, Clarke NW. Promotion of prostatic metastatic migration towards human bone marrow stoma by omega 6 and its inhibition by omega 3 PUFAs. Br J Cancer. 2006;94(6):842–53. doi:10.1038/sj.bjc.6603030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Brown MD, Hart C, Gazi E, Gardner P, Lockyer N, Clarke N. Influence of omega-6 PUFA arachidonic acid and bone marrow adipocytes on metastatic spread from prostate cancer. Br J Cancer. 2009;102(2):403–13. doi:10.1038/sj.bjc.6605481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clin Exp Metastasis. 2015;32(4):353–68. doi:10.1007/s10585-015-9714-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Herroon M, Rajagurubandara E, Hardaway AL, Powell K, Turchick A, Feldmann D, Podgorski I. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget. 2013;4(11):2108–23. doi:10.18632/oncotarget.1482.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Paz-Filho G, Mishra AK, Licinio J. Adipokines: soluble factors from adipose tissue implicated in cancer. In: Adipose tissue and cancer. New York: Springer; 2013. p. 71–97. doi:10.1007/978-1-4614-7660-3_5.

    Chapter  Google Scholar 

  112. Garofalo C, Surmacz E. Leptin and cancer. J Cell Physiol. 2006;207(1):12–22. doi:10.1002/jcp.20472.

    Article  CAS  PubMed  Google Scholar 

  113. Paz-Filho G, Lim EL, Wong ML, Licinio J. Associations between adipokines and obesity-related cancer. Front Biosci. 2011;16:1634–50.

    Article  CAS  Google Scholar 

  114. Bjorbaek C, Kahn B B. Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res. 2004;59:305–331.

    Google Scholar 

  115. Ceddia RB. Direct metabolic regulation in skeletal muscle and fat tissue by leptin: implications for glucose and fatty acids homeostasis. Int J Obes. 2005;29(10):1175–83. doi:10.1038/sj.ijo.0803025.

    Article  CAS  Google Scholar 

  116. Martin SS, Qasim A, Reilly MP. Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol. 2008;52(15):1201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. St-Pierre J, Tremblay ML. Modulation of leptin resistance by protein tyrosine phosphatases. Cell Metab. 2012;15(3):292–7. doi:10.1016/j.cmet.2012.02.004.

    Article  CAS  PubMed  Google Scholar 

  118. Boguszewski CL, Paz-Filho G, Velloso LA. Neuroendocrine body weight regulation: integration between fat tissue, gastrointestinal tract, and the brain. Endokrynol Pol. 2010;61(2):194–206.

    CAS  PubMed  Google Scholar 

  119. Fruhbeck G. Intracellular signalling pathways activated by leptin. Biochem J. 2006;393(1):7–20.

    Article  CAS  PubMed  Google Scholar 

  120. Kelesidis T, Kelesidis I, Chou S, Mantzoros CS. Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med. 2010;152(2):93–100. doi:10.7326/0003-4819-152-2-201001190-00008.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bouloumié A, Drexler HC, Lafontan M, Busse R. Leptin, the product of Ob gene, promotes angiogenesis. Circ Res. 1998;83(10):1059–66. doi:10.1161/01.RES.83.10.1059.

    Article  PubMed  Google Scholar 

  122. Onuma M, Bub JD, Rummel TL, Iwamoto Y. Prostate cancer cell-adipocyte interaction: leptin mediates androgen-independent prostate cancer cell proliferation through c-Jun NH2-terminal kinase. J Biol Chem. 2003;278(43):42660–7. doi:10.1074/jbc.M304984200.

    Article  CAS  PubMed  Google Scholar 

  123. Hardwick JCH, Van Den Brink GR, Offerhaus GJ, Van Deventer SJH, Peppelenbosch MP. Leptin is a growth factor for colonic epithelial cells. Gastroenterology. 2001;121(1):79–90. doi:10.1053/gast.2001.25490.

    Article  CAS  PubMed  Google Scholar 

  124. Ogunwobi OO, Beales ILP. The anti-apoptotic and growth stimulatory actions of leptin in human colon cancer cells involves activation of JNK mitogen activated protein kinase, JAK2 and PI3 kinase/Akt. Int J Color Dis. 2007;22(4):401–9. doi:10.1007/s00384-006-0181-y.

    Article  Google Scholar 

  125. Uddin S, Bavi PP, Hussain AR, Alsbeih G, Al-Sanea N, Abduljabbar A, et al. Leptin receptor expression in middle eastern colorectal cancer and its potential clinical implication. Carcinogenesis. 2009;30(11):1832–40. doi:10.1093/carcin/bgp145.

    Article  CAS  PubMed  Google Scholar 

  126. Brown KA, Simpson ER. Obesity and breast cancer: progress to understanding the relationship. Cancer Res. 2010;70(1):4–7. doi:10.1158/0008-5472.CAN-09-2257.

    Article  CAS  PubMed  Google Scholar 

  127. Cirillo D, Rachiglio AM, la Montagna R, Giordano A, Normanno N. Leptin signaling in breast cancer: an overview. J Cell Biochem. 2008;105(4):956–64. doi:10.1002/jcb.21911.

    Article  CAS  PubMed  Google Scholar 

  128. Somasundar P, Yu AK, Vona-Davis L, McFadden DW. Differential effects of leptin on cancer in vitro. J Surg Res. 2003;113(1):50–5. doi:10.1016/S0022-4804(03)00166-5.

    Article  CAS  PubMed  Google Scholar 

  129. Castellucci M, De Matteis R, Meisser A, Cancello R, Monsurrò V, Islami D, et al. Leptin modulates extracellular matrix molecules and metalloproteinases: possible implications for trophoblast invasion. Mol Hum Reprod. 2000;6(10):951–8. doi:10.1093/molehr/6.10.951.

    Article  CAS  PubMed  Google Scholar 

  130. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92(03):347–55. doi:10.1079/BJN20041213.

    Article  CAS  PubMed  Google Scholar 

  131. Garonna E, Botham KM, Birdsey GM, Randi AM, Gonzalez-Perez RR, Wheeler-Jones CPD. Vascular endothelial growth factor receptor-2 couples cyclo-oxygenase-2 with pro-angiogenic actions of leptin on human endothelial cells. PLoS One. 2011;6(4):e18823. doi:10.1371/journal.pone.0018823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Park H, Kim M, Kwon GT, Lim DY, Yu R, Sung M-K, et al. A high-fat diet increases angiogenesis, solid tumor growth, and lung metastasis of CT26 colon cancer cells in obesity-resistant BALB/c mice. Mol Carcinog. 2012;51(11):869–80. doi:10.1002/mc.20856.

    Article  CAS  PubMed  Google Scholar 

  133. Park H-Y, Kwon HM, Lim HJ, Hong BK, Lee JY, Park BE, et al. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med. 2001;33(2):95–102.

    Article  CAS  PubMed  Google Scholar 

  134. Sierra-Honigmann MR, Nath AK, Murakami C, Garcı́a-Cardeña G, Papapetropoulos A, Sessa WC, et al. Biological action of leptin as an angiogenic factor. Science. 1998;281(5383):1683–6. doi:10.1126/science.281.5383.1683.

    Article  CAS  PubMed  Google Scholar 

  135. Gonzalez RR, Cherfils S, Escobar M, Yoo JH, Carino C, Styer AK, et al. Leptin signaling promotes the growth of mammary tumors and increases the expression of vascular endothelial growth factor (VEGF) and its receptor type two (VEGF-R2). J Biol Chem. 2006;281(36):26320–8. doi:10.1074/jbc.M601991200.

    Article  CAS  PubMed  Google Scholar 

  136. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2013;26(3):439–51. doi:10.1210/er.2005-0005.

    Article  CAS  Google Scholar 

  137. Waki H, Yamauchi T, Kamon J, Kita S, Ito Y, Hada Y, et al. Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology. 2013;146(2):790–6. doi:10.1210/en.2004-1096.

    Article  CAS  Google Scholar 

  138. Dalamaga M, Diakopoulos KN, Mantzoros CS. The role of adiponectin in cancer: a review of current evidence. Endocr Rev. 2012;33(4):547–94. doi:10.1210/er.2011-1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu M, Liu F. Transcriptional and post-translational regulation of adiponectin. Biochem J. 2010;425:41–52.

    Article  CAS  Google Scholar 

  140. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2013;86(5):1930–5.

    Article  Google Scholar 

  141. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762–9. doi:10.1038/nature01705.

    Article  CAS  PubMed  Google Scholar 

  142. Bjursell M, Ahnmark A, Bohlooly-Y M, William-Olsson L, Rhedin M, Peng X-R, et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes. 2007;56(3):583–93. doi:10.2337/db06-1432.

    Article  CAS  PubMed  Google Scholar 

  143. Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007;13(3):332–9. doi:10.1038/nm1557.

    Article  CAS  PubMed  Google Scholar 

  144. Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol. 2006;8(5):516–23. doi:10.1038/ncb1404.

    Article  CAS  PubMed  Google Scholar 

  145. Ahima RS. Adipose tissue as an endocrine organ. Obesity. 2006;14(S8):242S–9S. doi:10.1038/oby.2006.317.

    Article  CAS  PubMed  Google Scholar 

  146. Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003;278(4):2461–8. doi:10.1074/jbc.M209033200.

    Article  CAS  PubMed  Google Scholar 

  147. Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation. 2003;107(5):671–4.

    Article  CAS  PubMed  Google Scholar 

  148. Bråkenhielm E, Veitonmäki N, Cao R, Kihara S, Matsuzawa Y, Zhivotovsky B, et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci. 2004;101(8):2476–81. doi:10.1073/pnas.0308671100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Fenton JI, Birmingham JM, Hursting SD, Hord NG. Adiponectin blocks multiple signaling cascades associated with leptin-induced cell proliferation in Apc Min/+ colon epithelial cells. Int J Cancer. 2008;122(11):2437–45. doi:10.1002/ijc.23436.

    Article  CAS  PubMed  Google Scholar 

  150. VanSaun MN. Molecular pathways: adiponectin and leptin signaling in cancer. Clin Cancer Res. 2013;19(8):1926–32. doi:10.1158/1078-0432.CCR-12-0930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chiu Y-C, Shieh D-C, Tong K-M, Chen C-P, Huang K-C, Chen P-C, et al. Involvement of AdipoR receptor in adiponectin-induced motility and alpha2beta1 integrin upregulation in human chondrosarcoma cells. Carcinogenesis. 2009;30(10):1651–9. doi:10.1093/carcin/bgp156.

    Article  CAS  PubMed  Google Scholar 

  152. Ishikawa M, Kitayama J, Yamauchi T, Kadowaki T, Maki T, Miyato H, et al. Adiponectin inhibits the growth and peritoneal metastasis of gastric cancer through its specific membrane receptors AdipoR1 and AdipoR2. Cancer Sci. 2007;98(7):1120–7. doi:10.1111/j.1349-7006.2007.00486.x.

    Article  CAS  PubMed  Google Scholar 

  153. Kim AY, Lee YS, Kim KH, Lee JH, Lee HK, Jang S-H, et al. Adiponectin represses colon cancer cell proliferation via AdipoR1- and -R2-mediated AMPK activation. Mol Endocrinol (Baltimore, MD). 2010;24(7):1441–52. doi:10.1210/me.2009-0498.

    Article  CAS  Google Scholar 

  154. Man K, Ng KTP, Xu A, Cheng Q, Lo CM, Xiao JW, et al. Suppression of liver tumor growth and metastasis by adiponectin in nude mice through inhibition of tumor angiogenesis and downregulation of Rho kinase/IFN-inducible protein 10/matrix metalloproteinase 9 signaling. Clin Cancer Res. 2010;16(3):967–77. doi:10.1158/1078-0432.CCR-09-1487.

    Article  CAS  PubMed  Google Scholar 

  155. Wang Y, Lam JB, Lam KSL, Liu J, Lam MC, Hoo RLC, et al. Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res. 2006;66(23):11462–70. doi:10.1158/0008-5472.CAN-06-1969.

    Article  CAS  PubMed  Google Scholar 

  156. Bub JD, Miyazaki T, Iwamoto Y. Adiponectin as a growth inhibitor in prostate cancer cells. Biochem Biophys Res Commun. 2006;340(4):1158–66. doi:10.1016/j.bbrc.2005.12.103.

    Article  CAS  PubMed  Google Scholar 

  157. Kelesidis I, Kelesidis T, Mantzoros CS. Adiponectin and cancer: a systematic review. Br J Cancer. 2006;94(9):1221–5. doi:10.1038/sj.bjc.6603051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cleary MP, Grossmann ME. Minireview: obesity and breast cancer: the estrogen connection. Endocrinology. 2009;150(6):2537–42. doi:10.1210/en.2009-0070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cust AE, Kaaks R, Friedenreich C, Bonnet F, Laville M, Lukanova A, et al. Plasma adiponectin levels and endometrial cancer risk in pre- and postmenopausal women. J Clin Endocrinol Metabol. 2007;92(1):255–63. doi:10.1210/jc.2006-1371.

    Article  CAS  Google Scholar 

  160. Cong L, Gasser J, Zhao J, Yang B, Li F, Zhao AZ. Human adiponectin inhibits cell growth and induces apoptosis in human endometrial carcinoma cells, HEC-1-A and RL95 2. Endocr Relat Cancer. 2007;14(3):713–20. doi:10.1677/ERC-07-0065.

    Article  CAS  PubMed  Google Scholar 

  161. Sugiyama M, Takahashi H, Hosono K, Endo H, Kato S, Yoneda K, et al. Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int J Oncol. 2009;34(2):339–44.

    CAS  PubMed  Google Scholar 

  162. Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol. 1994;14(2):1431–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307(5708):426–30. doi:10.1126/science.1097243.

    Article  CAS  PubMed  Google Scholar 

  164. Revollo JR, Grimm AA, Imai S-I. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr Opin Gastroenterol. 2007;23(2):164–70. doi:10.1097/MOG.0b013e32801b3c8f.

    Article  CAS  PubMed  Google Scholar 

  165. Curat CA, Wegner V, Sengenès C, Miranville A, Tonus C, Busse R, Bouloumié A. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia. 2006;49(4):744–7. doi:10.1007/s00125-006-0173-z.

    Article  CAS  PubMed  Google Scholar 

  166. Bi T-Q, Che X-M. Nampt/PBEF/visfatin and cancer. Cancer Biol Ther. 2014;10(2):119–25. doi:10.4161/cbt.10.2.12581.

    Article  CAS  Google Scholar 

  167. Hageman GJ, Stierum RH. Niacin, poly(ADP-ribose) polymerase-1 and genomic stability. Mutat Res. 2001;475(1–2):45–56.

    Article  CAS  PubMed  Google Scholar 

  168. Adya R, Tan BK, Punn A, Chen J, Randeva HS. Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: novel insights into visfatin-induced angiogenesis. Cardiovasc Res. 2008;78(2):356–65. doi:10.1093/cvr/cvm111.

    Article  CAS  PubMed  Google Scholar 

  169. Bae Y-H, Park H-J, Kim S-R, Kim J-Y, Kang Y, Kim J-A, et al. Notch1 mediates visfatin-induced FGF-2 upregulation and endothelial angiogenesis. Cardiovasc Res. 2010;89(2):cvq276–445. doi:10.1093/cvr/cvq276.

    Google Scholar 

  170. Adya R, Tan BK, Chen J, Randeva HS. Pre-B cell colony enhancing factor (PBEF)/visfatin induces secretion of MCP-1 in human endothelial cells: role in visfatin-induced angiogenesis. Atherosclerosis. 2009;205(1):113–9. doi:10.1016/j.atherosclerosis.2008.11.024.

    Article  CAS  PubMed  Google Scholar 

  171. Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007;130(6):1095–107. doi:10.1016/j.cell.2007.07.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Patel ST, Mistry T, Brown JEP, Digby JE, Adya R, Desai KM, Randeva HS. A novel role for the adipokine visfatin/pre-B cell colony-enhancing factor 1 in prostate carcinogenesis. Peptides. 2010;31(1):51–7. doi:10.1016/j.peptides.2009.10.001.

    Article  CAS  PubMed  Google Scholar 

  173. Wang B, Hasan MK, Alvarado E, Yuan H, Wu H, Chen WY. NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response. Oncogene. 2011;30(8):907–21. doi:10.1038/onc.2010.468.

    Article  CAS  PubMed  Google Scholar 

  174. Park H-J, Kim S-R, Kim SS, Wee H-J, Bae M-K, Ryu MH, Bae S-K. Visfatin promotes cell and tumor growth by upregulating Notch1 in breast cancer. Oncotarget. 2014;5(13):5087–99. doi:10.18632/oncotarget.2086.

    PubMed  PubMed Central  Google Scholar 

  175. Iwaki T, Urano T, Umemura K. PAI-1, progress in understanding the clinical problem and its aetiology. Br J Haematol. 2012;157(3):291–8. doi:10.1111/j.1365-2141.2012.09074.x.

    Article  CAS  PubMed  Google Scholar 

  176. De Taeye B, Smith LH, Vaughan DE. Plasminogen activator inhibitor-1: a common denominator in obesity, diabetes and cardiovascular disease. Curr Opin Pharmacol. 2005;5(2):149–54. doi:10.1016/j.coph.2005.01.007.

    Article  PubMed  CAS  Google Scholar 

  177. Carter JC, Church FC. Obesity and breast cancer: the roles of peroxisome proliferator-activated receptor-γ and plasminogen activator inhibitor-1. PPAR Res. 2009;2009(4):345320–13. doi:10.1155/2009/345320.

    PubMed  PubMed Central  Google Scholar 

  178. van Kruijsdijk RCM, van der Wall E, Visseren FLJ. Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomarkers Prev. 2009;18(10):2569–78. doi:10.1158/1055-9965.EPI-09-0372.

    Article  PubMed  CAS  Google Scholar 

  179. Dass K, Ahmad A, Azmi AS, Sarkar SH, Sarkar FH. Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev. 2008;34(2):122–36. doi:10.1016/j.ctrv.2007.10.005.

    Article  CAS  PubMed  Google Scholar 

  180. Soff GA, Sanderowitz J, Gately S, Verrusio E, Weiss I, Brem S, Kwaan HC. Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primary tumor growth, tumor-associated angiogenesis, and metastasis to lung and liver in an athymic mouse model. J Clin Investig. 1995;96(6):2593–600. doi:10.1172/JCI118323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Roca C, Primo L, Valdembri D, Cividalli A, Declerck P, Carmeliet P, et al. Hyperthermia inhibits angiogenesis by a plasminogen activator inhibitor 1-dependent mechanism. Cancer Res. 2003;63(7):1500–7.

    CAS  PubMed  Google Scholar 

  182. Bajou K, Maillard C, Jost M, Lijnen RH, Gils A, Declerck P, et al. Host-derived plasminogen activator inhibitor-1 (PAI-1) concentration is critical for in vivo tumoral angiogenesis and growth. Oncogene. 2004;23(41):6986–90. doi:10.1038/sj.onc.1207859.

    Article  CAS  PubMed  Google Scholar 

  183. Kwaan HC, Wang J, Svoboda K, Declerck PJ. Plasminogen activator inhibitor 1 may promote tumour growth through inhibition of apoptosis. Br J Cancer. 2000;82(10):1702–8. doi:10.1054/bjoc.2000.1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bajou K, Noel A, Gerard RD, Masson V, Brunner N, Holst-Hansen C, et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med. 1998;4(8):923–8.

    Article  CAS  PubMed  Google Scholar 

  185. Gutierrez LS, Schulman A, Brito-Robinson T, Noria F, Ploplis VA, Castellino FJ. Tumor development is retarded in mice lacking the gene for urokinase-type plasminogen activator or its inhibitor, plasminogen activator inhibitor-1. Cancer Res. 2000;60(20):5839–47.

    CAS  PubMed  Google Scholar 

  186. Wun TC, Palmier MO, Siegel NR, Smith CE. Affinity purification of active plasminogen activator inhibitor-1 (PAI-1) using immobilized anhydrourokinase. Demonstration of the binding, stabilization, and activation of PAI-1 by vitronectin. J Biol Chem. 1989;264(14):7862–8.

    CAS  PubMed  Google Scholar 

  187. Palmieri D, Lee JW, Juliano RL, Church FC. Plasminogen activator inhibitor-1 and -3 increase cell adhesion and motility of MDA-MB-435 breast cancer cells. J Biol Chem. 2002;277(43):40950–7. doi:10.1074/jbc.M202333200.

    Article  CAS  PubMed  Google Scholar 

  188. Chazaud B, Ricoux R, Christov C, Plonquet A, Gherardi RK, Barlovatz-Meimon G. Promigratory effect of plasminogen activator inhibitor-1 on invasive breast cancer cell populations. Am J Pathol. 2002;160(1):237–46. doi:10.1016/S0002-9440(10)64367-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Mertens I, Ballaux D, Funahashi T, Matsuzawa Y, Van der Planken M, Verrijken A, et al. Inverse relationship between plasminogen activator inhibitor-I activity and adiponectin in overweight and obese women. Interrelationship with visceral adipose tissue, insulin resistance, HDL-chol and inflammation. Thromb Haemost. 2005;94(6):1190–5.

    CAS  PubMed  Google Scholar 

  190. Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9(5):361–71. doi:10.1038/nrc2628.

    Article  CAS  PubMed  Google Scholar 

  191. Sewter CP, Digby JE, Blows F, Prins J, O'Rahilly S. Regulation of tumour necrosis factor-alpha release from human adipose tissue in vitro. J Endocrinol. 1999;163(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  192. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280(5):E745–51.

    Article  CAS  PubMed  Google Scholar 

  193. Park IC, Park MJ, Choe TB, Jang JJ, Hong SI, Lee SH. TNF-alpha induces apoptosis mediated by AEBSF-sensitive serine protease(s) that may involve upstream caspase-3/CPP32 protease activation in a human gastric cancer cell line. Int J Oncol. 2000;16(6):1243–8.

    CAS  PubMed  Google Scholar 

  194. Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R, et al. The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res. 2007;67(2):585–92. doi:10.1158/0008-5472.CAN-06-2941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. von Wolff M, Thaler CJ, Zepf C, Becker V, Beier HM, Strowitzki T. Endometrial expression and secretion of interleukin-6 throughout the menstrual cycle. Gynecol Endocrinol. 2002;16(2):121–9.

    Article  Google Scholar 

  196. Hagemann T, Wilson J, Kulbe H, Li NF, Leinster DA, Charles K, et al. Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. J Immunol. 2005;175(2):1197–205.

    Article  CAS  PubMed  Google Scholar 

  197. Gordon GJ, Mani M, Mukhopadhyay L, Dong L, Yeap BY, Sugarbaker DJ, Bueno R. Inhibitor of apoptosis proteins are regulated by tumour necrosis factor-alpha in malignant pleural mesothelioma. J Pathol. 2007;211(4):439–46. doi:10.1002/path.2120.

    Article  CAS  PubMed  Google Scholar 

  198. Gray-Schopfer VC, Karasarides M, Hayward R, Marais R. Tumor necrosis factor-alpha blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer Res. 2007;67(1):122–9. doi:10.1158/0008-5472.CAN-06-1880.

    Article  CAS  PubMed  Google Scholar 

  199. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, et al. “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med. 2008;205(6):1261–8. doi:10.1084/jem.20080108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Chiu JJ, Sgagias MK, Cowan KH. Interleukin 6 acts as a paracrine growth factor in human mammary carcinoma cell lines. Clin Cancer Res. 1996;2(1):215–21.

    CAS  PubMed  Google Scholar 

  201. Conze D, Weiss L, Regen PS, Bhushan A, Weaver D, Johnson P, Rincón M. Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res. 2001;61(24):8851–8.

    CAS  PubMed  Google Scholar 

  202. Hong DS, Angelo LS, Kurzrock R. Interleukin-6 and its receptor in cancer. Cancer. 2007;110(9):1911–28. doi:10.1002/cncr.22999.

    Article  CAS  PubMed  Google Scholar 

  203. Schafer ZT, Brugge JS. IL-6 involvement in epithelial cancers. J Clin Investig. 2007;117(12):3660–3. doi:10.1172/JCI34237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Investig. 2007;117(12):3988–4002. doi:10.1172/JCI32533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Benoy I, Salgado R, Colpaert C, Weytjens R, Vermeulen PB, Dirix LY. Serum interleukin 6, plasma VEGF, serum VEGF, and VEGF platelet load in breast cancer patients. Clin Breast Cancer. 2002;2(4):311–5.

    Article  CAS  PubMed  Google Scholar 

  206. Kimijima I, Ohtake T, Sagara H, Watanabe T, Takenoshita S. Scattered fat invasion: an indicator for poor prognosis in premenopausal, and for positive estrogen receptor in postmenopausal breast cancer patients. Oncology. 2000;59(Suppl 1):25–30.

    Article  PubMed  Google Scholar 

  207. Rio M-C, Dali-Youcef N, Tomasetto C. Local adipocyte cancer cell paracrine loop: can “sick fat” be more detrimental? Horm Mol Biol Clin Invest. 2015;21(1):43–56. doi:10.1515/hmbci-2014-0044.

    CAS  Google Scholar 

  208. Yamaguchi J, Ohtani H, Nakamura K, Shimokawa I, Kanematsu T. Prognostic impact of marginal adipose tissue invasion in ductal carcinoma of the breast. Am J Clin Pathol. 2008;130(3):382–8. doi:10.1309/MX6KKA1UNJ1YG8VN.

    Article  PubMed  Google Scholar 

  209. Mathur A, Zyromski NJ, Pitt HA, Al-Azzawi H, Walker JJ, Saxena R, Lillemoe KD. Pancreatic steatosis promotes dissemination and lethality of pancreatic cancer. J Am Coll Surg. 2009;208(5):989–994. discussion 994–6. doi:10.1016/j.jamcollsurg.2008.12.026.

    Article  PubMed  Google Scholar 

  210. Finley DS, Calvert VS, Inokuchi J, Lau A, Narula N, Petricoin EF, et al. Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness. J Urol. 2009;182(4):1621–7. doi:10.1016/j.juro.2009.06.015.

    Article  CAS  PubMed  Google Scholar 

  211. Ho GYF, Wang T, Gunter MJ, Strickler HD, Cushman M, Kaplan RC, et al. Adipokines linking obesity with colorectal cancer risk in postmenopausal women. Cancer Res. 2012;72(12):3029–37. doi:10.1158/0008-5472.CAN-11-2771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Bolukbas FF, Kilic H, Bolukbas C, Gumus M, Horoz M, Turhal NS, Kavakli B. Serum leptin concentration and advanced gastrointestinal cancers: a case controlled study. BMC Cancer. 2004;4(1):29. doi:10.1186/1471-2407-4-29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Kumor A, Daniel P, Pietruczuk M, Małecka-Panas E. Serum leptin, adiponectin, and resistin concentration in colorectal adenoma and carcinoma (CC) patients. Int J Color Dis. 2009;24(3):275–81. doi:10.1007/s00384-008-0605-y.

    Article  Google Scholar 

  214. Nakajima TE, Yamada Y, Hamano T, Furuta K, Matsuda T, Fujita S, et al. Adipocytokines as new promising markers of colorectal tumors: adiponectin for colorectal adenoma, and resistin and visfatin for colorectal cancer. Cancer Sci. 2010;101(5):1286–91. doi:10.1111/j.1349-7006.2010.01518.x.

    Article  CAS  PubMed  Google Scholar 

  215. Stattin P, Palmqvist R, Söderberg S, Biessy C, Ardnor B, Hallmans G, et al. Plasma leptin and colorectal cancer risk: a prospective study in northern Sweden. Oncol Rep. 2003;10(6):2015–21.

    PubMed  Google Scholar 

  216. Tamakoshi K, Toyoshima H, Wakai K, Kojima M, Suzuki K, Watanabe Y, et al. Leptin is associated with an increased female colorectal cancer risk: a nested case-control study in Japan. Oncology. 2005;68(4–6):454–61. doi:10.1159/000086988.

    Article  CAS  PubMed  Google Scholar 

  217. Tessitore L, Vizio B, Jenkins O, De Stefano I, Ritossa C, Argiles JM, et al. Leptin expression in colorectal and breast cancer patients. Int J Mol Med. 2000;5(4):421–6.

    CAS  PubMed  Google Scholar 

  218. Paik SS, Jang S-M, Jang K-S, Lee KH, Choi D, Jang SJ. Leptin expression correlates with favorable clinicopathologic phenotype and better prognosis in colorectal adenocarcinoma. Ann Surg Oncol. 2009;16(2):297–303. doi:10.1245/s10434-008-0221-7.

    Article  PubMed  Google Scholar 

  219. Vona-Davis L, Rose DP. Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocr Relat Cancer. 2007;14(2):189–206. doi:10.1677/ERC-06-0068.

    Article  CAS  PubMed  Google Scholar 

  220. Petridou E, Papadiamantis Y, Markopoulos C, Spanos E, Dessypris N, Trichopoulos D. Leptin and insulin growth factor I in relation to breast cancer (Greece). Cancer Causes Control. 2000;11(5):383–8.

    Article  CAS  PubMed  Google Scholar 

  221. Macciò A, Madeddu C, Gramignano G, Mulas C, Floris C, Massa D, et al. Correlation of body mass index and leptin with tumor size and stage of disease in hormone-dependent postmenopausal breast cancer: preliminary results and therapeutic implications. J Mol Med (Berlin, Germany). 2010;88(7):677–86. doi:10.1007/s00109-010-0611-8.

    Article  CAS  Google Scholar 

  222. Rose DP, Komninou D, Stephenson GD. Obesity, adipocytokines, and insulin resistance in breast cancer. Obes Rev. 2004;5(3):153–65. doi:10.1111/j.1467-789X.2004.00142.x.

    Article  CAS  PubMed  Google Scholar 

  223. Akinci M, Kosova F, Cetin B, Aslan S, Ari Z, Cetin A. Leptin levels in thyroid cancer. Asian J Surg. 2009;32(4):216–23. doi:10.1016/S1015-9584(09)60397-3.

    Article  PubMed  Google Scholar 

  224. Spyridopoulos TN, Petridou ET, Dessypris N, Terzidis A, Skalkidou A, Deliveliotis C, et al. Inverse association of leptin levels with renal cell carcinoma: results from a case-control study. Hormones (Athens). 2009;8(1):39–46.

    Article  Google Scholar 

  225. Liao LM, Schwartz K, Pollak M, Graubard BI, Li Z, Ruterbusch J, et al. Serum leptin and adiponectin levels and risk of renal cell carcinoma. Obesity. 2013;21(7):1478–85. doi:10.1002/oby.20138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Horiguchi A, Sumitomo M, Asakuma J, Asano T, Zheng R, Asano T, et al. Increased serum leptin levels and over expression of leptin receptors are associated with the invasion and progression of renal cell carcinoma. J Urol. 2006;176(4 Pt 1):1631–5. doi:10.1016/j.juro.2006.06.039.

    Article  CAS  PubMed  Google Scholar 

  227. Goktas S, Yilmaz MI, Caglar K, Sonmez A, Kilic S, Bedir S. Prostate cancer and adiponectin. Urology. 2005;65(6):1168–72. doi:10.1016/j.urology.2004.12.053.

    Article  PubMed  Google Scholar 

  228. Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe DM, et al. Adiponectin and breast cancer risk. J Clin Endocrinol Metabol. 2004;89(3):1102–7. doi:10.1210/jc.2003-031804.

    Article  CAS  Google Scholar 

  229. Soliman PT, Wu D, Tortolero-Luna G, Schmeler KM, Slomovitz BM, Bray MS, et al. Association between adiponectin, insulin resistance, and endometrial cancer. Cancer. 2006;106(11):2376–81. doi:10.1002/cncr.21866.

    Article  CAS  PubMed  Google Scholar 

  230. Lukanova A, Söderberg S, Kaaks R, Jellum E, Stattin P. Serum adiponectin is not associated with risk of colorectal cancer. Cancer Epidemiol Biomark Prev. 2006;15(2):401–2. doi:10.1158/1055-9965.EPI-05-0836.

    Article  CAS  Google Scholar 

  231. Otake S, Takeda H, Suzuki Y, Fukui T, Watanabe S, Ishihama K, et al. Association of visceral fat accumulation and plasma adiponectin with colorectal adenoma: evidence for participation of insulin resistance. Clin Cancer Res. 2005;11(10):3642–6. doi:10.1158/1078-0432.CCR-04-1868.

    Article  CAS  PubMed  Google Scholar 

  232. Wei EK, Giovannucci E, Fuchs CS, Willett WC, Mantzoros CS. Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst. 2005;97(22):1688–94. doi:10.1093/jnci/dji376.

    Article  CAS  PubMed  Google Scholar 

  233. Yamaji T, Iwasaki M, Sasazuki S, Tsugane S. Interaction between adiponectin and leptin influences the risk of colorectal adenoma. Cancer Res. 2010;70(13):5430–7. doi:10.1158/0008-5472.CAN-10-0178.

    Article  CAS  PubMed  Google Scholar 

  234. Chang M-C, Chang Y-T, Su T-C, Yang W-S, Chen C-L, Tien Y-W, et al. Adiponectin as a potential differential marker to distinguish pancreatic cancer and chronic pancreatitis. Pancreas. 2007;35(1):16–21. doi:10.1097/MPA.0b013e3180547709.

    Article  CAS  PubMed  Google Scholar 

  235. Dalamaga M, Migdalis I, Fargnoli JL, Papadavid E, Bloom E, Mitsiades N, et al. Pancreatic cancer expresses adiponectin receptors and is associated with hypoleptinemia and hyperadiponectinemia: a case-control study. Cancer Causes Control. 2009;20(5):625–33. doi:10.1007/s10552-008-9273-z.

    Article  PubMed  Google Scholar 

  236. Stolzenberg-Solomon RZ, Weinstein S, Pollak M, Tao Y, Taylor PR, Virtamo J, Albanes D. Prediagnostic adiponectin concentrations and pancreatic cancer risk in male smokers. Am J Epidemiol. 2008;168(9):1047–55. doi:10.1093/aje/kwn221.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Horiguchi A, Ito K, Sumitomo M, Kimura F, Asano T, Hayakawa M. Decreased serum adiponectin levels in patients with metastatic renal cell carcinoma. Jpn J Clin Oncol. 2008;38(2):106–11. doi:10.1093/jjco/hym158.

    Article  PubMed  Google Scholar 

  238. Pinthus JH, Kleinmann N, Tisdale B, Chatterjee S, Lu J-P, Gillis A, et al. Lower plasma adiponectin levels are associated with larger tumor size and metastasis in clear-cell carcinoma of the kidney. Eur Urol. 2008;54(4):866–73. doi:10.1016/j.eururo.2008.02.044.

    Article  CAS  PubMed  Google Scholar 

  239. Spyridopoulos TN, Petridou ET, Skalkidou A, Dessypris N, Chrousos GP, Mantzoros CS, Obesity and Cancer Oncology Group. Low adiponectin levels are associated with renal cell carcinoma: a case-control study. Int J Cancer. 2007;120(7):1573–8. doi:10.1002/ijc.22526.

    Article  CAS  PubMed  Google Scholar 

  240. Park JT, Yoo T-H, Chang TI, Lee DH, Lee JH, Lee JE, et al. Insulin resistance and lower plasma adiponectin increase malignancy risk in nondiabetic continuous ambulatory peritoneal dialysis patients. Metabolism. 2011;60(1):121–6. doi:10.1016/j.metabol.2010.02.006.

    Article  CAS  PubMed  Google Scholar 

  241. Tian W, Zhu Y, Wang Y, Teng F, Zhang H, Liu G, et al. Visfatin, a potential biomarker and prognostic factor for endometrial cancer. Gynecol Oncol. 2013;129(3):505–12. doi:10.1016/j.ygyno.2013.02.022.

    Article  CAS  PubMed  Google Scholar 

  242. Chen M, Wang Y, Li Y, Zhao L, Ye S, Wang S, et al. Association of plasma visfatin with risk of colorectal cancer: an observational study of Chinese patients. Asia-Pacific J Clin Oncol. 2013;n/a–n/a. doi:10.1111/ajco.12090.

  243. Nakajima TE, Yamada Y, Hamano T, Furuta K, Gotoda T, Katai H, et al. Adipocytokine levels in gastric cancer patients: resistin and visfatin as biomarkers of gastric cancer. J Gastroenterol. 2009;44(7):685–90. doi:10.1007/s00535-009-0063-5.

    Article  CAS  PubMed  Google Scholar 

  244. Dossus L, Becker S, Rinaldi S, Lukanova A, Tjonneland A, Olsen A, et al. Tumor necrosis factor (TNF)-α, soluble TNF receptors and endometrial cancer risk: the EPIC study. Int J Cancer. 2011;129(8):2032–7. doi:10.1002/ijc.25840.

    Article  CAS  PubMed  Google Scholar 

  245. Michalaki V, Syrigos K, Charles P, Waxman J. Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer. 2004;90(12):2312–6. doi:10.1038/sj.bjc.6601814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Pfitzenmaier J, Vessella R, Higano CS, Noteboom JL, Wallace D, Corey E. Elevation of cytokine levels in cachectic patients with prostate carcinoma. Cancer. 2003;97(5):1211–6. doi:10.1002/cncr.11178.

    Article  CAS  PubMed  Google Scholar 

  247. Dossus L, Rinaldi S, Becker S, Lukanova A, Tjonneland A, Olsen A, et al. Obesity, inflammatory markers, and endometrial cancer risk: a prospective case-control study. Endocr Relat Cancer. 2010;17(4):1007–19. doi:10.1677/ERC-10-0053.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Purohit A, Reed MJ. Regulation of estrogen synthesis in postmenopausal women. Steroids. 2002;67(12):979–83.

    Article  CAS  PubMed  Google Scholar 

  249. Twillie DA, Eisenberger MA, Carducci MA, Hseih WS, Kim WY, Simons JW. Interleukin-6: a candidate mediator of human prostate cancer morbidity. Urology. 1995;45(3):542–9. doi:10.1016/S0090-4295(99)80034-X.

    Article  CAS  PubMed  Google Scholar 

  250. Ludwig H, Nachbaur DM, Fritz E, Krainer M, Huber H. Interleukin-6 is a prognostic factor in multiple myeloma. Blood. 1991;77(12):2794–5.

    CAS  PubMed  Google Scholar 

  251. Blay JY, Negrier S, Combaret V, Attali S, Goillot E, Merrouche Y, et al. Serum level of interleukin 6 as a prognosis factor in metastatic renal cell carcinoma. Cancer Res. 1992;52(12):3317–22.

    CAS  PubMed  Google Scholar 

  252. Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Boissière F, Laune D, et al. Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res. 2007;9(1):R15. doi:10.1186/bcr1648.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Salgado R, Junius S, Benoy I, Van Dam P, Vermeulen P, Van Marck E, et al. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer. 2003;103(5):642–6. doi:10.1002/ijc.10833.

    Article  CAS  PubMed  Google Scholar 

  254. Barak V, Kalickman I, Nisman B, Farbstein H, Fridlender ZG, Baider L, et al. Changes in cytokine production of breast cancer patients treated with interferons. Cytokine. 1998;10(12):977–83. doi:10.1006/cyto.1998.0378.

    Article  CAS  PubMed  Google Scholar 

  255. Ashizawa N, Yahata T, Quan J, Adachi S, Yoshihara K, Tanaka K. Serum leptin-adiponectin ratio and endometrial cancer risk in postmenopausal female subjects. Gynecol Oncol. 2010;119(1):65–9. doi:10.1016/j.ygyno.2010.07.007.

    Article  CAS  PubMed  Google Scholar 

  256. Chen D-C, Chung Y-F, Yeh Y-T, Chaung H-C, Kuo F-C, Fu O-Y, et al. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett. 2006;237(1):109–14. doi:10.1016/j.canlet.2005.05.047.

    Article  CAS  PubMed  Google Scholar 

  257. Cleary MP, Ray A, Rogozina OP, Dogan S, Grossmann ME. Targeting the adiponectin:leptin ratio for postmenopausal breast cancer prevention. Front Biosci (Schol Ed). 2009;1:329–57.

    Article  Google Scholar 

  258. Mirza S, Qu H-Q, Li Q, Martinez PJ, Rentfro AR, McCormick JB, Fisher-Hoch SP. Adiponectin/leptin ratio and metabolic syndrome in a Mexican American population. Clin Invest Med. 2011;34(5):E290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Garofalo C, Koda M, Cascio S, Sulkowska M, Kanczuga-Koda L, Golaszewska J, et al. Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clin Cancer Res. 2006;12(5):1447–53. doi:10.1158/1078-0432.CCR-05-1913.

    Article  CAS  PubMed  Google Scholar 

  260. Révillion F, Charlier M, Lhotellier V, Hornez L, Giard S, Baranzelli M-C, et al. Messenger RNA expression of leptin and leptin receptors and their prognostic value in 322 human primary breast cancers. Clin Cancer Res. 2006;12(7 Pt 1):2088–94. doi:10.1158/1078-0432.CCR-05-1904.

    Article  PubMed  Google Scholar 

  261. Koda M, Sulkowska M, Kanczuga-Koda L, Surmacz E, Sulkowski S. Overexpression of the obesity hormone leptin in human colorectal cancer. J Clin Pathol. 2007;60(8):902–6. doi:10.1136/jcp.2006.041004.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Cheng S-P, Chi C-W, Tzen C-Y, Yang T-L, Lee J-J, Liu T-P, Liu C-L. Clinicopathologic significance of leptin and leptin receptor expressions in papillary thyroid carcinoma. Surgery. 2010;147(6):847–53. doi:10.1016/j.surg.2009.11.004.

    Article  PubMed  Google Scholar 

  263. Uddin S, Bavi P, Siraj AK, Ahmed M, Al-Rasheed M, Hussain AR, et al. Leptin-R and its association with PI3K/AKT signaling pathway in papillary thyroid carcinoma. Endocr Relat Cancer. 2010;17(1):191–202. doi:10.1677/ERC-09-0153.

    Article  CAS  PubMed  Google Scholar 

  264. Barb D, Williams CJ, Neuwirth AK, Mantzoros CS. Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence. Am J Clin Nutr. 2007;86(3):s858–66.

    PubMed  Google Scholar 

  265. Lee YC, Yang YH, Su JH, Chang HL, Hou MF, Yuan SSF. High visfatin expression in breast cancer tissue is associated with poor survival. Cancer Epidemiol Biomark Prev. 2011;20(9):1892–901. doi:10.1158/1055-9965.EPI-11-0399.

    Article  CAS  Google Scholar 

  266. Folgueira MAAK, Carraro DM, Brentani H, Patrão DFDC, Barbosa EM, Netto MM, et al. Gene expression profile associated with response to doxorubicin-based therapy in breast cancer. Clin Cancer Res. 2005;11(20):7434–43. doi:10.1158/1078-0432.CCR-04-0548.

    Article  CAS  PubMed  Google Scholar 

  267. Foekens JA, Look MP, Peters HA, van Putten WLJ, Portengen H, Klijn JGM. Urokinase-type plasminogen activator and its inhibitor PAI-1: predictors of poor response to tamoxifen therapy in recurrent breast cancer. J Natl Cancer Inst. 1995;87(10):751–6. doi:10.1093/jnci/87.10.751.

    Article  CAS  PubMed  Google Scholar 

  268. Grøndahl-Hansen J, Christensen IJ, Rosenquist C, Brünner N, Mouridsen HT, Danø K, Blichert-Toft M. High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res. 1993;53(11):2513–21.

    PubMed  Google Scholar 

  269. Cleveland RJ, Gammon MD, Long C-M, Gaudet MM, Eng SM, Teitelbaum SL, et al. Common genetic variations in the LEP and LEPR genes, obesity and breast cancer incidence and survival. Breast Cancer Res Treat. 2010;120(3):745–52. doi:10.1007/s10549-009-0503-1.

    Article  CAS  PubMed  Google Scholar 

  270. Khan S, Shukla S, Sinha S, Meeran SM. Role of adipokines and cytokines in obesity-associated breast cancer: therapeutic targets. Cytokine Growth Factor Rev. 2013;24(6):503–13. doi:10.1016/j.cytogfr.2013.10.001.

    Article  CAS  PubMed  Google Scholar 

  271. Liu C-L, Chang Y-C, Cheng S-P, Chern S-R, Yang T-L, Lee J-J, et al. The roles of serum leptin concentration and polymorphism in leptin receptor gene at codon 109 in breast cancer. Oncology. 2007;72(1–2):75–81. doi:10.1159/000111097.

    Article  CAS  PubMed  Google Scholar 

  272. Terrasi M, Fiorio E, Mercanti A, Koda M, Moncada CA, Sulkowski S, et al. Functional analysis of the -2548G/A leptin gene polymorphism in breast cancer cells. Int J Cancer. 2009;125(5):1038–44. doi:10.1002/ijc.24372.

    Article  CAS  PubMed  Google Scholar 

  273. Castelló R, España F, Vázquez C, Fuster C, Almenar SM, Aznar J, Estellés A. Plasminogen activator inhibitor-1 4G/5G polymorphism in breast cancer patients and its association with tissue PAI-1 levels and tumor severity. Thromb Res. 2006;117(5):487–92. doi:10.1016/j.thromres.2005.03.025.

    Article  PubMed  CAS  Google Scholar 

  274. Lei H, Hemminki K, Johansson R, Altieri A, Enquist K, Henriksson R, et al. PAI-1-675 4G/5G polymorphism as a prognostic biomarker in breast cancer. Breast Cancer Res Treat. 2008;109(1):165–75. doi:10.1007/s10549-007-9635-3.

    Article  CAS  PubMed  Google Scholar 

  275. Vairaktaris E, Yapijakis C, Serefoglou Z, Vylliotis A, Ries J, Nkenke E, et al. Plasminogen activator inhibitor-1 polymorphism is associated with increased risk for oral cancer. Oral Oncol. 2006;42(9):888–92. doi:10.1016/j.oraloncology.2005.12.005.

    Article  CAS  PubMed  Google Scholar 

  276. Sciacca FL, Ciusani E, Silvani A, Corsini E, Frigerio S, Pogliani S, et al. Genetic and plasma markers of venous thromboembolism in patients with high grade glioma. Clin Cancer Res. 2004;10(4):1312–7.

    Article  CAS  PubMed  Google Scholar 

  277. Shen C, Sun H, Sun D, Xu L, Zhang X, Liu A, et al. Polymorphisms of tumor necrosis factor-alpha and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2011;126(3):763–70. doi:10.1007/s10549-010-1184-5.

    Article  CAS  PubMed  Google Scholar 

  278. Lu P-H, Tang Y, Li C, Shen W, Ji L, Guo Y-J, Tao G-Q. Meta-analysis of association of tumor necrosis factor alpha-308 gene promoter polymorphism with gastric cancer. Zhonghua Yu Fang Yi Xue Za Zhi. 2010;44(3):209–14.

    CAS  PubMed  Google Scholar 

  279. Yang Y, Luo C, Feng R, Bi S. The TNF-α, IL-1B and IL-10 polymorphisms and risk for hepatocellular carcinoma: a meta-analysis. J Cancer Res Clin Oncol. 2011;137(6):947–52. doi:10.1007/s00432-010-0959-8.

    Article  CAS  PubMed  Google Scholar 

  280. Iacopetta B, Grieu F, Joseph D. The -174 G/C gene polymorphism in interleukin-6 is associated with an aggressive breast cancer phenotype. Br J Cancer. 2004;90(2):419–22. doi:10.1038/sj.bjc.6601545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Smith KC, Bateman AC, Fussell HM, Howell WM. Cytokine gene polymorphisms and breast cancer susceptibility and prognosis. Eur J Immunogenet. 2004;31(4):167–73. doi:10.1111/j.1365-2370.2004.00462.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Dudley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chang, J., Dudley, A.C. (2017). The Function and Diagnostic Potential of Adipocyte-Derived Factors in the Tumor Microenvironment. In: Akslen, L., Watnick, R. (eds) Biomarkers of the Tumor Microenvironment. Springer, Cham. https://doi.org/10.1007/978-3-319-39147-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39147-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39145-8

  • Online ISBN: 978-3-319-39147-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics