Tissue-Based Biomarkers of Tumor-Vascular Interactions

Chapter

Abstract

Studies have indicated that the prognosis of cancer patients might be improved by targeting the tumor-associated vascular system. There is, however, a lack of markers that can predict the clinical response to such antitumor therapy and thereby select patients for optimal management. Whereas microvessel density is known to be an effective prognostic factor, information on response prediction is virtually lacking. In addition to the use of novel endothelial proteins for improved tumor imaging and targeting strategies, the potential practical value of selected histologic markers such as vascular density, microvessel proliferation, and vascular maturation for predictive purposes needs to be validated in future clinical studies.

Keywords

Tissue biomarkers Angiogenesis Microvessel density Vascular proliferation Vascular maturation Glomeruloid microvascular proliferation Vascular invasion 

References

  1. 1.
    Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407(6801):242–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358(19):2039–49.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001;7(11):1194–201.PubMedCrossRefGoogle Scholar
  7. 7.
    Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820–7.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42.PubMedCrossRefGoogle Scholar
  9. 9.
    Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol. 2006;3(1):24–40.PubMedCrossRefGoogle Scholar
  10. 10.
    Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146(6):873–87.PubMedCrossRefGoogle Scholar
  11. 11.
    Paulsen T, Aas T, Borresen AL, Varhaug JE, Lonning PE, Akslen LA. Angiogenesis does not predict clinical response to doxorubicin monotherapy in patients with locally advanced breast cancer [letter]. Int J Cancer. 1997;74(1):138–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Tynninen O, Sjostrom J, von Boguslawski K, Bengtsson NO, Heikkila R, Malmstrom P, et al. Tumour microvessel density as predictor of chemotherapy response in breast cancer patients. Br J Cancer. 2002;86(12):1905–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Jubb AM, Hurwitz HI, Bai W, Holmgren EB, Tobin P, Guerrero AS, et al. Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol. 2006;24(2):217–27.PubMedCrossRefGoogle Scholar
  14. 14.
    Lambrechts D, Lenz HJ, de Haas S, Carmeliet P, Scherer SJ. Markers of response for the antiangiogenic agent bevacizumab. J Clin Oncol. 2013;31(9):1219–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Akslen LA, Straume O, Geisler S, Sorlie T, Chi JT, Aas T, et al. Glomeruloid microvascular proliferation is associated with lack of response to chemotherapy in breast cancer. Br J Cancer. 2011;105(1):9–12.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bergsland EK. When does the presence of the target predict response to the targeted agent? J Clin Oncol. 2006;24(2):213–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Brem S, Cotran R, Folkman J. Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst. 1972;48(2):347–56.PubMedGoogle Scholar
  18. 18.
    Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N Engl J Med. 1991;324(1):1–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst. 2002;94(12):883–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Vartanian RK, Weidner N. Correlation of intratumoral endothelial cell proliferation with microvessel density (tumor angiogenesis) and tumor cell proliferation in breast carcinoma. Am J Pathol. 1994;144(6):1188–94.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Vermeulen PB, Verhoeven D, Hubens G, Van Marck E, Goovaerts G, Huyghe M, et al. Microvessel density, endothelial cell proliferation and tumour cell proliferation in human colorectal adenocarcinomas. Ann Oncol. 1995;6(1):59–64.PubMedCrossRefGoogle Scholar
  22. 22.
    Prall F, Gringmuth U, Nizze H, Barten M. Microvessel densities and microvascular architecture in colorectal carcinomas and their liver metastases: significant correlation of high microvessel densities with better survival. Histopathology. 2003;42(5):482–91.PubMedCrossRefGoogle Scholar
  23. 23.
    Stefansson I, Salvesen HB, Akslen LA. Vascular proliferation is important for clinical progress of endometrial cancer. Cancer Res. 2006;66(6):3303–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 2000;60(5):1388–93.PubMedGoogle Scholar
  25. 25.
    Dvorak HF. Rous-Whipple award lecture. How tumors make bad blood vessels and stroma. Am J Pathol. 2003;162(6):1747–57.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Dvorak HF. Tumor stroma, tumor blood vessels, and antiangiogenesis therapy. Cancer J. 2015;21(4):237–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Straume O, Chappuis PO, Salvesen HB, Halvorsen OJ, Haukaas SA, Goffin JR, et al. Prognostic importance of glomeruloid microvascular proliferation indicates an aggressive angiogenic phenotype in human cancers. Cancer Res. 2002;62(23):6808–11.PubMedGoogle Scholar
  28. 28.
    Mannelqvist M, Stefansson I, Salvesen HB, Akslen LA. Importance of tumour cell invasion in blood and lymphatic vasculature among patients with endometrial carcinoma. Histopathology. 2009;54(2):174–83.PubMedCrossRefGoogle Scholar
  29. 29.
    Mohammed RA, Ellis IO, Mahmmod AM, Hawkes EC, Green AR, Rakha EA, et al. Lymphatic and blood vessels in basal and triple-negative breast cancers: characteristics and prognostic significance. Mod Pathol. 2011;24(6):774–85.PubMedCrossRefGoogle Scholar
  30. 30.
    Klingen TA, Chen Y, Stefansson IM, Knutsvik G, Collett K, Abrahamsen AL, et al. Tumour cell invasion into blood vessels is significantly related to breast cancer subtypes and decreased survival. J Clin Pathol. 2017;70(4):313–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells – mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 2017;14(3):155–67.PubMedCrossRefGoogle Scholar
  32. 32.
    Srivastava A, Laidler P, Davies RP, Horgan K, Hughes LE. The prognostic significance of tumor vascularity in intermediate-thickness (0.76-4.0 mm thick) skin melanoma. Am J Pathol. 1988;133:419–23.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma [see comments]. J Natl Cancer Inst. 1992;84(24):1875–87.PubMedCrossRefGoogle Scholar
  34. 34.
    Salvesen H, Iversen O, Akslen L. Independent prognostic importance of microvessel density in endometrial carcinoma. Br J Cancer. 1998;77(7):1140–4.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Straume O, Salvesen HB, Akslen LA. Angiogenesis is prognostically important in vertical growth phase melanomas. Int J Oncol. 1999;15(3):595–9.PubMedGoogle Scholar
  36. 36.
    Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol. 1993;143(2):401–9.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Halvorsen OJ, Haukaas S, Hoisaeter PA, Akslen LA. Independent prognostic importance of microvessel density in clinically localized prostate cancer. Anticancer Res. 2000;20(5C):3791–9.PubMedGoogle Scholar
  38. 38.
    Axelsson K, Ljung BM, Moore DH 2nd, Thor AD, Chew KL, Edgerton SM, et al. Tumor angiogenesis as a prognostic assay for invasive ductal breast carcinoma. J Natl Cancer Inst. 1995;87(13):997–1008.PubMedCrossRefGoogle Scholar
  39. 39.
    Uzzan B, Nicolas P, Cucherat M, Perret GY. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res. 2004;64(9):2941–55.PubMedCrossRefGoogle Scholar
  40. 40.
    Belien JA, Somi S, de Jong JS, van Diest PJ, Baak JP. Fully automated microvessel counting and hot spot selection by image processing of whole tumour sections in invasive breast cancer. J Clin Pathol. 1999;52(3):184–92.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Vermeulen PB, Gasparini G, Fox SB, Colpaert C, Marson LP, Gion M, et al. Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer. 2002;38(12):1564–79.PubMedCrossRefGoogle Scholar
  42. 42.
    Fox SB, Harris AL. Histological quantitation of tumour angiogenesis. APMIS. 2004;112(7–8):413–30.PubMedCrossRefGoogle Scholar
  43. 43.
    de Jong JS, van Diest PJ, Baak JP. Heterogeneity and reproducibility of microvessel counts in breast cancer. Lab Investig. 1995;73(6):922–6.PubMedGoogle Scholar
  44. 44.
    Tolaney SM, Boucher Y, Duda DG, Martin JD, Seano G, Ancukiewicz M, et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci U S A. 2015;112(46):14325–30.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Fox SB, Gatter KC, Bicknell R, Going JJ, Stanton P, Cooke TG, et al. Relationship of endothelial cell proliferation to tumor vascularity in human breast cancer. Cancer Res. 1993;53(18):4161–3.PubMedGoogle Scholar
  46. 46.
    Vartanian RK, Weidner N. Endothelial cell proliferation in prostatic carcinoma and prostatic hyperplasia: correlation with Gleason’s score, microvessel density, and epithelial cell proliferation. Lab Investig. 1995;73(6):844–50.PubMedGoogle Scholar
  47. 47.
    Colpaert CG, Vermeulen PB, Benoy I, Soubry A, van Roy F, van Beest P, et al. Inflammatory breast cancer shows angiogenesis with high endothelial proliferation rate and strong E-cadherin expression. Br J Cancer. 2003;88(5):718–25.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Arnes JB, Stefansson IM, Straume O, Baak JP, Lonning PE, Foulkes WD, et al. Vascular proliferation is a prognostic factor in breast cancer. Breast Cancer Res Treat. 2012;133(2):501–10.PubMedCrossRefGoogle Scholar
  49. 49.
    Nalwoga H, Arnes JB, Stefansson IM, Wabinga H, Foulkes WD, Akslen LA. Vascular proliferation is increased in basal-like breast cancer. Breast Cancer Res Treat. 2011;130(3):1063–71.PubMedCrossRefGoogle Scholar
  50. 50.
    Ribeiro-Silva A, Ribeiro do Vale F, Zucoloto S. Vascular endothelial growth factor expression in the basal subtype of breast carcinoma. Am J Clin Pathol. 2006;125(4):512–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Morabito A, Sarmiento R, Bonginelli P, Gasparini G. Antiangiogenic strategies, compounds, and early clinical results in breast cancer. Crit Rev Oncol Hematol. 2004;49(2):91–107.PubMedCrossRefGoogle Scholar
  52. 52.
    Kraby MR, Kruger K, Opdahl S, Vatten LJ, Akslen LA, Bofin AM. Microvascular proliferation in luminal A and basal-like breast cancer subtypes. J Clin Pathol. 2015;68(11):891–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. Proliferation of immature tumor vessels is a novel marker of clinical progression in prostate cancer. Cancer Res. 2009;69(11):4708–15.PubMedCrossRefGoogle Scholar
  54. 54.
    Kruger K, Stefansson IM, Collett K, Arnes JB, Aas T, Akslen LA. Microvessel proliferation by co-expression of endothelial nestin and Ki-67 is associated with a basal-like phenotype and aggressive features in breast cancer. Breast. 2013;22(3):282–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Haldorsen IS, Stefansson I, Gruner R, Husby JA, Magnussen IJ, Werner HM, et al. Increased microvascular proliferation is negatively correlated to tumour blood flow and is associated with unfavourable outcome in endometrial carcinomas. Br J Cancer. 2014;110(1):107–14.PubMedCrossRefGoogle Scholar
  56. 56.
    Stefansson IM, Raeder M, Wik E, Mannelqvist M, Kusonmano K, Knutsvik G, et al. Increased angiogenesis is associated with a 32-gene expression signature and 6p21 amplification in aggressive endometrial cancer. Oncotarget. 2015;6(12):10634–45.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Vincenti V, Cassano C, Rocchi M, Persico G. Assignment of the vascular endothelial growth factor gene to human chromosome 6p21.3. Circulation. 1996;93(8):1493–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9(6):685–93.PubMedCrossRefGoogle Scholar
  59. 59.
    Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 2003;17(15):1835–40.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003;314(1):15–23.PubMedCrossRefGoogle Scholar
  61. 61.
    Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315(26):1650–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002;160(3):985–1000.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest. 1999;103(2):159–65.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001;7(9):987–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62.PubMedCrossRefGoogle Scholar
  66. 66.
    Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10(2):145–7.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Gee MS, Procopio WN, Makonnen S, Feldman MD, Yeilding NM, Lee WM. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am J Pathol. 2003;162(1):183–93.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev. 2005;15(1):102–11.PubMedCrossRefGoogle Scholar
  69. 69.
    Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004;6(6):553–63.PubMedGoogle Scholar
  70. 70.
    Kakolyris S, Giatromanolaki A, Koukourakis M, Leigh IM, Georgoulias V, Kanavaros P, et al. Assessment of vascular maturation in non-small cell lung cancer using a novel basement membrane component, LH39: correlation with p53 and angiogenic factor expression. Cancer Res. 1999;59(21):5602–7.PubMedGoogle Scholar
  71. 71.
    Kakolyris S, Fox SB, Koukourakis M, Giatromanolaki A, Brown N, Leek RD, et al. Relationship of vascular maturation in breast cancer blood vessels to vascular density and metastasis, assessed by expression of a novel basement membrane component, LH39. Br J Cancer. 2000;82(4):844–51.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Mezheyeuski A, Bradic Lindh M, Guren TK, Dragomir A, Pfeiffer P, Kure EH, et al. Survival-associated heterogeneity of marker-defined perivascular cells in colorectal cancer. Oncotarget. 2016;7(27):41948–58.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wesseling P, Vandersteenhoven JJ, Downey BT, Ruiter DJ, Burger PC. Cellular components of microvascular proliferation in human glial and metastatic brain neoplasms. A light microscopic and immunohistochemical study of formalin-fixed, routinely processed material. Acta Neuropathol. 1993;85(5):508–14.PubMedCrossRefGoogle Scholar
  74. 74.
    Rojiani AM, Dorovini-Zis K. Glomeruloid vascular structures in glioblastoma multiforme: an immunohistochemical and ultrastructural study. J Neurosurg. 1996;85(6):1078–84.PubMedCrossRefGoogle Scholar
  75. 75.
    Pettersson A, Nagy JA, Brown LF, Sundberg C, Morgan E, Jungles S, et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Investig. 2000;80(1):99–115.PubMedCrossRefGoogle Scholar
  76. 76.
    Sundberg C, Nagy JA, Brown LF, Feng D, Eckelhoefer IA, Manseau EJ, et al. Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery. Am J Pathol. 2001;158(3):1145–60.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Brat DJ, Van Meir EG. Glomeruloid microvascular proliferation orchestrated by VPF/VEGF: a new world of angiogenesis research. Am J Pathol. 2001;158(3):789–96.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Schiffer D, Bosone I, Dutto A, Di Vito N, Chio A. The prognostic role of vessel productive changes and vessel density in oligodendroglioma. J Neuro-Oncol. 1999;44(2):99–107.CrossRefGoogle Scholar
  79. 79.
    Tsai CY, Lai CH, Chan HL, Kuo T. Glomeruloid hemangioma – a specific cutaneous marker of POEMS syndrome. Int J Dermatol. 2001;40(6):403–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Ohtani H. Glomeruloid structures as vascular reaction in human gastrointestinal carcinoma. Jpn J Cancer Res. 1992;83(12):1334–40.PubMedCrossRefGoogle Scholar
  81. 81.
    Blaker H, Dragoje S, Laissue JA, Otto HF. Pericardial involvement by thymomas. Entirely intrapericardial thymoma and a pericardial metastasis of thymoma with glomeruloid vascular proliferations. Pathol Oncol Res. 1999;5(2):160–3.PubMedCrossRefGoogle Scholar
  82. 82.
    Dargent JL, Lespagnard L, Verdebout JM, Bourgeois P, Munck D. Glomeruloid microvascular proliferation in angiomyomatous hamartoma of the lymph node. Virchows Arch. 2004;445(3):320–2.PubMedCrossRefGoogle Scholar
  83. 83.
    Lyons LL, North PE, Mac-Moune Lai F, Stoler MH, Folpe AL, Weiss SW. Kaposiform hemangioendothelioma: a study of 33 cases emphasizing its pathologic, immunophenotypic, and biologic uniqueness from juvenile hemangioma. Am J Surg Pathol. 2004;28(5):559–68.PubMedCrossRefGoogle Scholar
  84. 84.
    Brat DJ, Castellano-Sanchez A, Kaur B, Van Meir EG. Genetic and biologic progression in astrocytomas and their relation to angiogenic dysregulation. Adv Anat Pathol. 2002;9(1):24–36.PubMedCrossRefGoogle Scholar
  85. 85.
    Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20(21):4368–80.PubMedCrossRefGoogle Scholar
  86. 86.
    Tanaka F, Oyanagi H, Takenaka K, Ishikawa S, Yanagihara K, Miyahara R, et al. Glomeruloid microvascular proliferation is superior to intratumoral microvessel density as a prognostic marker in non-small cell lung cancer. Cancer Res. 2003;63(20):6791–4.PubMedGoogle Scholar
  87. 87.
    Hoem D, Straume O, Immervoll H, Akslen LA, Molven A. Vascular proliferation is associated with survival in pancreatic ductal adenocarcinoma. APMIS. 2013;121(11):1037–46.Google Scholar
  88. 88.
    Straume O, Akslen LA. Increased expression of VEGF-receptors (FLT-1, KDR, NRP-1) and thrombospondin-1 is associated with glomeruloid microvascular proliferation, an aggressive angiogenic phenotype, in malignant melanoma. Angiogenesis. 2003;6(4):295–301.Google Scholar
  89. 89.
    Foulkes WD, Brunet JS, Stefansson IM, Straume O, Chappuis PO, Begin LR, et al. The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res. 2004;64(3):830–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Goffin JR, Straume O, Chappuis PO, Brunet JS, Begin LR, Hamel N, et al. Glomeruloid microvascular proliferation is associated with p53 expression, germline BRCA1 mutations and an adverse outcome following breast cancer. Br J Cancer. 2003;89(6):1031–4.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.CrossRefGoogle Scholar
  92. 92.
    Greenblatt MS, Chappuis PO, Bond JP, Hamel N, Foulkes WD. TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ-line mutations: distinctive spectrum and structural distribution. Cancer Res. 2001;61(10):4092–7.PubMedGoogle Scholar
  93. 93.
    Kawai H, Li H, Chun P, Avraham S, Avraham HK. Direct interaction between BRCA1 and the estrogen receptor regulates vascular endothelial growth factor (VEGF) transcription and secretion in breast cancer cells. Oncogene. 2002;21(50):7730–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Zhang L, Yu D, Hu M, Xiong S, Lang A, Ellis LM, et al. Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res. 2000;60(13):3655–61.PubMedGoogle Scholar
  95. 95.
    Pore N, Liu S, Shu HK, Li B, Haas-Kogan D, Stokoe D, et al. Sp1 is involved in Akt-mediated induction of VEGF expression through an HIF-1-independent mechanism. Mol Biol Cell. 2004;15(11):4841–53.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev. 2000;14(1):34–44.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Sherif ZA, Nakai S, Pirollo KF, Rait A, Chang EH. Downmodulation of bFGF-binding protein expression following restoration of p53 function. Cancer Gene Ther. 2001;8(10):771–82.PubMedCrossRefGoogle Scholar
  98. 98.
    Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 1994;265(5178):1582–4.PubMedCrossRefGoogle Scholar
  99. 99.
    Schuster C, Akslen LA, Straume O. Expression of heat shock protein 27 in melanoma metastases is associated with overall response to bevacizumab monotherapy: analyses of predictive markers in a clinical phase II study. PLoS One. 2016;11(5):e0155242.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Sharma S, Sharma MC, Sarkar C. Morphology of angiogenesis in human cancer: a conceptual overview, histoprognostic perspective and significance of neoangiogenesis. Histopathology. 2005;46(5):481–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Giatromanolaki A, Sivridis E, Koukourakis MI. Tumour angiogenesis: vascular growth and survival. APMIS. 2004;112(7–8):431–40.PubMedCrossRefGoogle Scholar
  102. 102.
    Weyn B, Tjalma WA, Vermeylen P, van Daele A, Van Marck E, Jacob W. Determination of tumour prognosis based on angiogenesis-related vascular patterns measured by fractal and syntactic structure analysis. Clin Oncol (R Coll Radiol). 2004;16(4):307–16.CrossRefGoogle Scholar
  103. 103.
    Favier J, Plouin PF, Corvol P, Gasc JM. Angiogenesis and vascular architecture in pheochromocytomas: distinctive traits in malignant tumors. Am J Pathol. 2002;161(4):1235–46.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, et al. Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A. 2003;100(19):10623–8.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ruoslahti E. Targeting tumor vasculature with homing peptides from phage display. Semin Cancer Biol. 2000;10(6):435–42.PubMedCrossRefGoogle Scholar
  106. 106.
    Ruoslahti E. Vascular zip codes in angiogenesis and metastasis. Biochem Soc Trans. 2004;32(Pt3):397–402.PubMedCrossRefGoogle Scholar
  107. 107.
    Laakkonen P, Akerman ME, Biliran H, Yang M, Ferrer F, Karpanen T, et al. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc Natl Acad Sci U S A. 2004;101(25):9381–6.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, et al. Genes expressed in human tumor endothelium. Science. 2000;289(5482):1197–202.PubMedCrossRefGoogle Scholar
  109. 109.
    Fonsatti E, Altomonte M, Nicotra MR, Natali PG, Maio M. Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels. Oncogene. 2003;22(42):6557–63.PubMedCrossRefGoogle Scholar
  110. 110.
    Kumar S, Ghellal A, Li C, Byrne G, Haboubi N, Wang JM, et al. Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res. 1999;59(4):856–61.PubMedGoogle Scholar
  111. 111.
    Tanaka F, Otake Y, Yanagihara K, Kawano Y, Miyahara R, Li M, et al. Evaluation of angiogenesis in non-small cell lung cancer: comparison between anti-CD34 antibody and anti-CD105 antibody. Clin Cancer Res. 2001;7(11):3410–5.PubMedGoogle Scholar
  112. 112.
    Wikstrom P, Lissbrant IF, Stattin P, Egevad L, Bergh A. Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate. 2002;51(4):268–75.PubMedCrossRefGoogle Scholar
  113. 113.
    Salvesen HB, Gulluoglu MG, Stefansson I, Akslen LA. Significance of CD 105 expression for tumour angiogenesis and prognosis in endometrial carcinomas. APMIS. 2003;111(11):1011–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Straume O, Akslen LA. Expression of vascular endothelial growth factor, its receptors (flt-1, kdr) and tsp-1 related to microvessel density and patient outcome in vertical growth phase melanomas. Am J Pathol. 2001;159(1):223–35.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Brekken RA, Huang X, King SW, Thorpe PE. Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Res. 1998;58(9):1952–9.PubMedGoogle Scholar
  116. 116.
    Koukourakis MI, Giatromanolaki A, Thorpe PE, Brekken RA, Sivridis E, Kakolyris S, et al. Vascular endothelial growth factor/KDR activated microvessel density versus CD31 standard microvessel density in non-small cell lung cancer. Cancer Res. 2000;60(11):3088–95.PubMedGoogle Scholar
  117. 117.
    Guddo F, Fontanini G, Reina C, Vignola AM, Angeletti A, Bonsignore G. The expression of basic fibroblast growth factor (bFGF) in tumor-associated stromal cells and vessels is inversely correlated with non- small cell lung cancer progression. Hum Pathol. 1999;30(7):788–94.PubMedCrossRefGoogle Scholar
  118. 118.
    Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. Expression of bFGF/FGFR-1 and vascular proliferation related to clinicopathologic features and tumor progress in localized prostate cancer. Virchows Arch. 2006;448(1):68–74.Google Scholar
  119. 119.
    Straume O, Akslen LA. Importance of vascular phenotype by basic fibroblast growth factor, and influence of the angiogenic factors basic fibroblast growth factor/fibroblast growth factor receptor-1 and ephrin-A1/EphA2 on melanoma progression. Am J Pathol. 2002;160(3):1009–19.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Davies G, Cunnick GH, Mansel RE, Mason MD, Jiang WG. Levels of expression of endothelial markers specific to tumour-associated endothelial cells and their correlation with prognosis in patients with breast cancer. Clin Exp Metastasis. 2004;21(1):31–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Rmali KA, Watkins G, Harrison G, Parr C, Puntis MC, Jiang WG. Tumour endothelial marker 8 (TEM-8) in human colon cancer and its association with tumour progression. Eur J Surg Oncol. 2004;30(9):948–53.PubMedCrossRefGoogle Scholar
  122. 122.
    Rmali KA, Puntis MC, Jiang WG. Prognostic values of tumor endothelial markers in patients with colorectal cancer. World J Gastroenterol. 2005;11(9):1283–6.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Neri D, Bicknell R. Tumour vascular targeting. Nat Rev Cancer. 2005;5(6):436–46.PubMedCrossRefGoogle Scholar
  124. 124.
    Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med. 1998;4(5):623–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Hood JD, Cheresh DA. Targeted delivery of mutant Raf kinase to neovessels causes tumor regression. Cold Spring Harb Symp Quant Biol. 2002;67:285–91.PubMedCrossRefGoogle Scholar
  126. 126.
    van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res. 2011;728(1–2):23–34.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Rakha EA, Martin S, Lee AH, Morgan D, Pharoah PD, Hodi Z, et al. The prognostic significance of lymphovascular invasion in invasive breast carcinoma. Cancer. 2012;118(15):3670–80.PubMedCrossRefGoogle Scholar
  128. 128.
    Arnaout-Alkarain A, Kahn HJ, Narod SA, Sun PA, Marks AN. Significance of lymph vessel invasion identified by the endothelial lymphatic marker D2-40 in node negative breast cancer. Mod Pathol. 2007;20(2):183–91.PubMedCrossRefGoogle Scholar
  129. 129.
    Roses DF, Bell DA, Flotte TJ, Taylor R, Ratech H, Dubin N. Pathologic predictors of recurrence in stage 1 (TINOMO) breast cancer. Am J Clin Pathol. 1982;78(6):817–20.PubMedCrossRefGoogle Scholar
  130. 130.
    Gujam FJ, Going JJ, Mohammed ZM, Orange C, Edwards J, McMillan DC. Immunohistochemical detection improves the prognostic value of lymphatic and blood vessel invasion in primary ductal breast cancer. BMC Cancer. 2014;14:676.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008;8(5):329–40.PubMedCrossRefGoogle Scholar
  132. 132.
    Woelfle U, Cloos J, Sauter G, Riethdorf L, Janicke F, van Diest P, et al. Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res. 2003;63(18):5679–84.PubMedGoogle Scholar
  133. 133.
    Foulkes WD, Grainge MJ, Rakha EA, Green AR, Ellis IO. Tumor size is an unreliable predictor of prognosis in basal-like breast cancers and does not correlate closely with lymph node status. Breast Cancer Res Treat. 2009;117(1):199–204.PubMedCrossRefGoogle Scholar
  134. 134.
    Holm-Rasmussen EV, Jensen MB, Balslev E, Kroman N, Tvedskov TF. Reduced risk of axillary lymphatic spread in triple-negative breast cancer. Breast Cancer Res Treat. 2015;149(1):229–36.PubMedCrossRefGoogle Scholar
  135. 135.
    Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR, et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med. 2000;342(8):525–33.PubMedCrossRefGoogle Scholar
  136. 136.
    Mannelqvist M, Stefansson IM, Bredholt G, Hellem Bo T, Oyan AM, Jonassen I, et al. Gene expression patterns related to vascular invasion and aggressive features in endometrial cancer. Am J Pathol. 2011;178(2):861–71.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Mannelqvist M, Wik E, Stefansson IM, Akslen LA. An 18-gene signature for vascular invasion is associated with aggressive features and reduced survival in breast cancer. PLoS One. 2014;9(6):e98787.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Centre for Cancer Biomarkers CCBIO, Department of Clinical MedicineUniversity of BergenBergenNorway
  2. 2.Department of PathologyHaukeland University HospitalBergenNorway

Personalised recommendations