Biomarker Panels and Contemporary Practice in Clinical Trials of Targeted Therapy

  • Nina Louise Jebsen
  • Samantha Scarlett
  • Bergrun Tinna Magnusdottir
  • Bjørn Tore Gjertsen


Development of cancer therapy follows three main veins: mutation-driven drug development, immunomodulatory therapy, and evolution of conventional chemo- and radiotherapy. All of these therapeutic modalities require more precise biomarkers, not only for increasing precision and enhancing efficiency but also to avoid unnecessary toxicity for the patient and costs for the society. In clinical trials, there is an increasing use of biomarker panels for risk stratification and therapy guidance. Single biomarkers, in particular genetic mutations, have been tested to optimize therapy with only limited success. So far, only a small fraction of the patients may benefit from state-of-the-art diagnostics and biomarker determination, although predictive factors have successfully been implemented in treatment of, for instance, breast cancer and colorectal cancer. We will exemplify and illustrate the use of biomarkers in late- and early-phase clinical trials, in which biomarker panels employed on acute leukemia or sarcoma assisted in pivotal decision-making. Clinical trials in acute leukemia and sarcoma often include biomarkers based on combinations of cytogenetics, gene mutations, gene expression, and protein detection. Acute leukemia and sarcoma are suggested to originate from progenitor or stem cells of hematopoietic or mesenchymal origin, respectively. The different biology of these diseases, based on cancer cell context and in relation to healthy tissue and tumor stroma, leads to their clinical manifestations and may provide guidance on the direction of future biomarker-tailored therapy.

There is no fast track to establishing biomarker-based targeted therapy. However, combining biomarkers of different nature may provide clinically relevant and robust biomarker panels that can be used in late-phase clinical trials in acute leukemia and soft tissue sarcoma. For future prospects of simplifying biomarker approaches, functional subdivision of particular cancers into defined subsets may be the most promising path to provide molecular personalized therapy that optimally benefits the patient.


Biomarker panelsMutational analysis Design of clinical trials Functional genomics tests 


  1. 1.
    Simon R. Biomarker based clinical trial design. Chin Clin Oncol. 2014 3(3):39. doi:  10.3978/j.issn.2304-3865.2014.02.03.
  2. 2.
    DeVita VT Jr, Eggermont AM, Hellman S, Kerr DJ. Clinical cancer research: the past, present and the future. Nat Rev Clin Oncol. 2014;11(11):663–9. doi: 10.1038/nrclinonc.2014.
  3. 3.
    Schwaederle M, Zhao M, et al. Impact of precision medicine in diverse cancers: a meta-analysis of phase II clinical trials. J Clin Oncol. 2015;33(32):3817–25. doi: 10.1200/JCO.2015.61.5997.
  4. 4.
    Henry N, Hayes D. Cancer biomarkers. Mol Oncol. 2012;6:140–6. doi: 10.1016/j.molonc.2012.01.010.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Boussemart L, Malka-Mahieu H, et al. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature. 2014;513(7516):105–9. doi: 10.1038/nature13572.CrossRefPubMedGoogle Scholar
  6. 6.
    Behbehani GK, Samusik N, et al. (2015) Mass cytometric functional profiling of acute myeloid leukemia defines cell-cycle and immunophenotypic properties that correlate with known responses to therapy. Cancer Discov 5(9):988–1003. doi: 10.1158/2159-8290.CD-15-0298.
  7. 7.
    Pemovska T, Kontro M, et al. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov. 2013;3(12):1416–29. doi: 10.1158/2159-8290.CD-13-0350.
  8. 8.
    Helleday T. Poisoning cancer cells with oxidized nucleosides. N Engl J Med. 2015;373(16):1570–1. doi: 10.1056/NEJMcibr1510335.CrossRefPubMedGoogle Scholar
  9. 9.
    Barker HE, Paget JT, et al. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15(7):409–25. doi: 10.1038/nrc3958.
  10. 10.
    Mbeunkui F, Johann DJ Jr. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol. 2009;63(4):571–82. doi: 10.1007/s00280-008-0881-9.CrossRefPubMedGoogle Scholar
  11. 11.
    Choi SY, Collins CC, et al. Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol. 2013;230(4):350–5. doi: 10.1002/path.4218.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Balkwill FR, Capasso M, et al. The tumor microenvironment at a glance. Cell Sci. 2012;125(Pt 23):5591–6. doi: 10.1242/jcs.116392.CrossRefGoogle Scholar
  13. 13.
    Antonyak MA, Cerione RA. Microvesicles as mediators of intercellular communication in cancer. Methods Mol Biol. 2014;1165:147–73. doi: 10.1007/978-1-4939-0856-1_11.CrossRefPubMedGoogle Scholar
  14. 14.
    Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501(7467):346–54. doi: 10.1038/nature12626.CrossRefPubMedGoogle Scholar
  15. 15.
    Mehta C, Schäfer H. Biomarker driven population enrichment for adaptive oncology trials with time to event endpoints. Stat Med. 2014;33:4515–31. doi: 10.1002/sim.6272.CrossRefPubMedGoogle Scholar
  16. 16.
    Ong M, Carreira S, et al. Validation and utilisation of high-coverage next-generation sequencing to deliver the pharmacological audit trail. Br J Cancer. 2012;111(5):828–36. doi: 10.1038/bjc.2014.350.CrossRefGoogle Scholar
  17. 17.
    Fontes Jardim DL, Schwaederle M, et al. Impact of a biomarker-based strategy on oncology drug development: a meta-analysis of clinical trials leading to FDA approval. J Natl Cancer Inst. 2015;107(11) doi: 10.1093/jnci/djv253.
  18. 18.
    Trusheim MR, Berndt ER, Douglas FL. Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nat Rev Drug Discov. 2007;6(4):287–293.Google Scholar
  19. 19.
    Sargent DJ, Mandrekar SJ. Statistical issues in the validation of prognostic, predictive, and surrogate biomarkers. Clin Trials. 2013;10:647–52. doi: 10.1177/1740774513497125.
  20. 20.
    Garraway LA. Genomics-driven oncology: framework for an emerging paradigm. J Clin Oncol. 2013;31(15):1806–14. doi: 10.1200/JCO.2012.46.8934.
  21. 21.
    Le Tourneau C, Delord JP, et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol. 2015;16(13):1324–34. doi: 10.1016/S1470-2045(15)00188-6.
  22. 22.
    Zhang J, Walsh MF, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373(24):2336–46. doi: 10.1056/NEJMoa1508054.
  23. 23.
    Le Calvez F, Mukeria A, et al. TP53 and KRAS mutation load and types in lung cancers in relation to tobacco smoke: distinct patterns in never, former, and current smokers. Cancer Res. 2005;65:5076–83. doi: 10.1158/0008-5472.CAN-05-0551.
  24. 24.
    Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92. doi: 10.1056/NEJMoa1113205.
  25. 25.
    Landau DA, Tausch E, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525–30. doi: 10.1038/nature15395.
  26. 26.
    Wheatley K, Burnett AK, et al. A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council’s Adult and Childhood Leukaemia Working Parties. Br J Haematol. 1999;107(1):69–79.Google Scholar
  27. 27.
    Sparano JA, Robert MD, et al. Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med. 2015;373:2005. doi: 10.1056/NEJMoa1510764.
  28. 28.
    Akbani R, Ng PK, et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat Commun. 2014;5:3887. doi: 10.1038/ncomms4887.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Joensuu H, Hohenberger P, et al. Gastrointestinal stromal tumour. Lancet. 2013;382(9896):973–83. doi: 10.1016/S0140-6736(13)60106-3.CrossRefPubMedGoogle Scholar
  30. 30.
    Engellau J, et al. Improved prognostication in soft tissue sarcoma: independent information from vascular invasion, necrosis, growth pattern, and immunostaining using whole-tumor sections and tissue microarrays. Hum Pathol. 2005;36(9):994–1002. doi: 10.1016/j.humpath.2005.07.008.
  31. 31.
    Jebsen NL, et al. Five-year results from a Scandinavian sarcoma group study (SSG XIII) of adjuvant chemotherapy combined with accelerated radiotherapy in high-risk soft tissue sarcoma of extremities and trunk wall. Int J Radiat Oncol Biol Phys. 2011;81(5):1359–66. doi: 10.1016/j.ijrobp.2010.07.037.CrossRefPubMedGoogle Scholar
  32. 32.
    Lønning PE. Breast cancer prognostication and prediction: are we making progress? Ann Oncol. 2007;18(Suppl 8):viii3–7. doi: 10.1093/annonc/mdm260.
  33. 33.
    Pantel K, Alix-Panabières C. Real-time liquid biopsy in cancer patients: fact or fiction? Cancer Res. 2013;73(21):6384–8. doi: 10.1158/0008-5472.CrossRefPubMedGoogle Scholar
  34. 34.
    Le Cesne A, et al. Optimizing tyrosine kinase inhibitor therapy in gastrointestinal stromal tumors: exploring the benefits of continuous kinase suppression. Oncologist. 2013;18(11):1192–9. doi: 10.1634/theoncologist.2012-0361.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Joensuu H. Adjuvant therapy for high-risk gastrointestinal stromal tumour: considerations for optimal management. Drugs. 2012;72(15):1953–63. doi: 10.2165/11635590-000000000-00000.
  36. 36.
    Engelholm LH, Melander MC, et al. Targeting a novel bone degradation pathway in primary bone cancer by inactivation of the collagen receptor uPARAP/Endo180. J Pathol. 2015;238(1):120–33. doi: 10.1002/path.4661.CrossRefPubMedGoogle Scholar
  37. 37.
    Galluzzi L, Vacchelli E, Bravo-San Pedro JM, et al. Classification of current anticancer immunotherapies. Oncotarget. 2014;5(24):12472–508. doi: 10.18632/oncotarget.2998.
  38. 38.
    Naumov GN, Folkman J, Straume O, Akslen LA. Tumor-vascular interactions and tumor dormancy. APMIS. 2008;116(7–8):569–85. doi: 10.1111/j.1600-0463.2008.01213.x.
  39. 39.
    Labarge MA, Parvin B, et al. Molecular deconstruction, detection, and computational prediction of microenvironment-modulated cellular responses to cancer therapeutics. Adv Drug Deliv Rev. 2014;69-70:123–31. doi: 10.1016/j.addr.2014.02.009.
  40. 40.
    Hellesøy M, Lorens JB. Cellular context-mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis. Mol Biol Cell. 2015;26(14):2698–711. doi: 10.1091/mbc.E14-09-1378.
  41. 41.
    Mima K, Sukawa Y, et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 2015;1(5):653–61. doi: 10.1001/jamaoncol.2015.1377.
  42. 42.
    Eriguchi Y, Takashima S, et al. Graft-versus-host disease disrupts intestinal microbial ecology by inhibiting Paneth cell production of α-defensins. Blood. 2012;120(1):223–31. doi: 10.1182/blood-2011-12-401166.CrossRefPubMedGoogle Scholar
  43. 43.
    Vétizou M, Pitt JM, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84. doi: 10.1126/science.aad1329.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bates SE, Berry DA, Balasubramaniam S, Bailey S, LoRusso PM, Rubin EH. Advancing clinical trials to streamline drug development. Clin Cancer Res. 2015;21(20):4527–35. doi: 10.1158/1078-0432.CCR-15-0039.CrossRefPubMedGoogle Scholar
  45. 45.
    Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353(2):172–87. doi: 10.1056/NEJMra044389.CrossRefPubMedGoogle Scholar
  46. 46.
    Casali PG, Le Cesne A, et al. Time to definitive failure to the first tyrosine kinase inhibitor in localized GI stromal tumors treated with imatinib as an adjuvant: a European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group Intergroup Randomized Trial in Collaboration With the Australasian Gastro-Intestinal Trials Group, UNICANCER, French Sarcoma Group, Italian Sarcoma Group, and Spanish Group for Research on Sarcomas. J Clin Oncol. 2015;33(36):4276–83. doi: 10.1200/JCO.2015.62.4304.
  47. 47.
    Hanfstein B, Müller MC, et al. Response-related predictors of survival in CML. Ann Hematol. 2015;94(Suppl 2):S227–39. doi: 10.1007/s00277-015-2327-x.CrossRefPubMedGoogle Scholar
  48. 48.
    Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311–9. doi: 10.1056/NEJMoa1411087.
  49. 49.
    Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N Engl J Med. 2015;373:123–35. doi: 10.1056/NEJMoa1504627.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Chow SC, Liu JP. Design and analysis of clinical trials: concepts and methodologies 3rd Edition. 2014 John Wiley & Sons, Inc., London.Google Scholar
  51. 51.
    Mandrekar SJ, Dahlberg SE, et al. Improving clinical trial efficiency: thinking outside the box. Am Soc Clin Oncol. 2015:e141–7. doi: 10.14694/EdBook_AM.2015.35.e141.
  52. 52.
    Boessen R, Heerspink HJ, et al. Improving clinical trial efficiency by biomarker-guided patient selection. Trials. 2014;15:103. doi: 10.1186/1745-6215-15-103.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
  54. 54.
    Thall F. Bayesian models and decision algorithms for complex early phase clinical trials. Stat Sci. 2010;25(2):227–44. doi: 10.1214/09-STS315.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Burman CF, Miller F, Wong KW, editors. Improving dose-finding: a philosophic view. In: Handbook of adaptive designs in pharmaceutical and clinical development. Boca Raton: CRC, pp. 10.1–10.23; 2010.Google Scholar
  56. 56.
    Atkinson AC, Biswas A. Bayesian adaptive biased-coin designs for clinical trials with normal responses. Biometrics. 2005;61(1):118-25. doi: 10.1111/j.0006-341X.2005.031002.x.
  57. 57.
    Toft N, Birgens H, et al. Risk group assignment differs for children and adults 1-45 yr with acute lymphoblastic leukemia treated by the NOPHO ALL-2008 protocol. Eur J Haematol. 2013;90(5):404–12. doi: 10.1111/ejh.12097.
  58. 58.
    Vaitkevičienė G, Forestier E, et al. Nordic Society of Paediatric Haematology and Oncology (NOPHO) High white blood cell count at diagnosis of childhood acute lymphoblastic leukaemia: biological background and prognostic impact. Results from the NOPHO ALL-92 and ALL-2000 studies. Eur J Haematol. 2011;86(1):38–46. doi: 10.1111/j.1600-0609.2010.01522.x.
  59. 59.
    Terwijn M, van Putten WL, et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. J Clin Oncol. 2013;31(31):3889–97. doi: 10.1200/JCO.2012.45.9628.CrossRefPubMedGoogle Scholar
  60. 60.
    Walter RB, Othus M, et al. Resistance prediction in AML: analysis of 4601 patients from MRC/NCRI, HOVON/SAKK, SWOG and MD Anderson Cancer Center. Leukemia. 2015;29(2):312–20. doi: 10.1038/leu.2014.242.CrossRefPubMedGoogle Scholar
  61. 61.
    Cornelissen JJ, Versluis J, et al. Comparative therapeutic value of post-remission approaches in patients with acute myeloid leukemia aged 40–60 years. Leukemia. 2015;29(5):1041–50. doi: 10.1038/leu.2014.332.CrossRefPubMedGoogle Scholar
  62. 62.
    Serve H, Krug U, et al. Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: results from a randomized, placebo-controlled trial. J Clin Oncol. 2013;31(25):3110–8. doi: 10.1200/JCO.2012.46.4990.CrossRefPubMedGoogle Scholar
  63. 63.
    Oellerich T, Mohr S, et al. FLT3-ITD and TLR9 use Bruton tyrosine kinase to activate distinct transcriptional programs mediating AML cell survival and proliferation. Blood. 2015;125(12):1936–47. doi: 10.1182/blood-2014-06-585216.CrossRefPubMedGoogle Scholar
  64. 64.
    Smith SM, Coleman J, et al. Molecular diagnostics in soft tissue sarcomas and gastrointestinal stromal tumors. J Surg Oncol. 2015;111(5):520–31. doi: 10.1002/jso.23882.
  65. 65.
    Schöffski P, Cornillie J, Wozniak A, Li H, Hompes D. Soft tissue sarcoma: an update on systemic treatment options for patients with advanced disease. Oncol Res Treat. 2014;37(6):355–62. doi: 10.1159/000362631.
  66. 66.
    Bühnemann C, Li S, et al. Quantification of the heterogeneity of prognostic cellular biomarkers in ewing sarcoma using automated image and random survival forest analysis. PLoS One. 2014;9(9):e107105. doi: 10.1371/journal.pone.0107105.
  67. 67.
    Antonescu CR, DeMatteo RP. CCR 20th anniversary commentary: a genetic mechanism of imatinib resistance in gastrointestinal stromal tumor-where are we a decade later? Clin Cancer Res. 2015;21(15):3363–5. doi: 10.1158/1078-0432.CCR-14-3120.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Canzonieri V, et al. Morphologic shift associated with aberrant cytokeratin expression in a GIST patient after tyrosine kinase inhibitors therapy. A case report with a brief review of the literature. Pathol Res Pract. 2015;212(1):63–7. doi: 10.1016/j.prp.2015.11.004.CrossRefPubMedGoogle Scholar
  69. 69.
  70. 70.
    Schöffski P, Adkins D, et al. An open-label, phase 2 study evaluating the efficacy and safety of the anti-IGF-1R antibody cixutumumab in patients with previously treated advanced or metastatic soft-tissue sarcoma or Ewing family of tumours. Eur J Cancer. 2013;49(15):3219–28. doi: 10.1016/j.ejca.2013.06.010.
  71. 71.
    Amur SG, Sanyal S, et al. Building a roadmap to biomarker qualification: challenges and opportunities. Biomark Med. 2015;9(11):1095–105. doi: 10.2217/bmm.15.90.CrossRefPubMedGoogle Scholar
  72. 72.
    Skavland J, Jørgensen KM, et al. Specific cellular signal-transduction responses to in vivo combination therapy with ATRA, valproic acid and theophylline in acute myeloid leukemia. Blood Cancer J. 2011;1(2):e4. doi: 10.1038/bcj.2011.2.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Pemovska T, Johnson E, et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature. 2015;519(7541):102–5. doi: 10.1038/nature14119.CrossRefPubMedGoogle Scholar
  74. 74.
    von Heideman A, Tholander B, et al. Chemotherapeutic drug sensitivity of primary cultures of epithelial ovarian cancer cells from patients in relation to tumour characteristics and therapeutic outcome. Acta Oncol. 2014;53(2):242–50. doi: 10.3109/0284186X.2013.794956.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Nina Louise Jebsen
    • 1
  • Samantha Scarlett
    • 3
  • Bergrun Tinna Magnusdottir
    • 2
  • Bjørn Tore Gjertsen
    • 3
  1. 1.Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science/Department of OncologyUniversity of Bergen/Haukeland, University HospitalBergenNorway
  2. 2.Department of Reseach and Development, Section for Clinical ResearchHaukeland University HospitalBergenNorway
  3. 3.Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science/Department of Internal Medicine, Haematology SectionUniversity of Bergen/Haukeland University HospitalBergenNorway

Personalised recommendations