Tumor-Host Interactions in Malignant Gliomas

  • Lina Leiss
  • Ercan Mutlu
  • Mohummad Aminur Rahman
  • Per Øyvind Enger


Malignant gliomas are infiltrative tumors arising in the brain, characterized by degradation of the extracellular matrix and tumor cell migration along white matter tracts. The most aggressive form displays florid angiogenesis and recruitment of host vessels. In a reciprocal fashion, host-derived factors exert modulatory effects on the glioma cell compartment. Thus, tumor-stroma interactions regulate critical aspects of brain tumor progression. These interactions are shaped by the structural organization of the central nervous system (CNS) and involve multiple cell types, extracellular matrix (ECM) components, and host cell-derived soluble factors that are unique to the CNS. Here, we will first provide an overview of the CNS microenvironment, followed by a review of how these elements contribute to the brain tumor-host interplay.


Gliomas Central nervous system Blood-brain barrier Brain tumor-stroma interactions Tumor-associated glial cells (TAGs) Brain tumor immunity Invasion Angiogenesis 


  1. 1.
    Cragg B. Brain extracellular space fixed for electron microscopy. Neurosci Lett. 1979;15(2–3):301–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Brodal P. The Central Nervous System. 4th ed. New York: Oxford University Press; 2010.Google Scholar
  3. 3.
    Brodal P. The Central Nervous System. 5th ed. New York: Oxford University Press; 2016.Google Scholar
  4. 4.
    Andriezen WL. the neuroglia elements in the human brain. Br Med J. 1893;2(1700):227–30.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Maunoury R, et al. Immunocytochemical localization of gliofibrillary proteins (GDAP) in human cerebral tumors. Histological and in vitro studies. Neurochirurgie. 1977;23(3):173–85.PubMedGoogle Scholar
  6. 6.
    Aird RB. The role of tissue permeability with particular reference to the blood-brain barrier in diseases of the central nervous system. Calif Med. 1948;69(5):360–3.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Brightman MW. Morphology of blood-brain interfaces. Exp Eye Res. 1977;25(Suppl):1–25.CrossRefPubMedGoogle Scholar
  8. 8.
    Luse SA. Formation of myelin in the central nervous system of mice and rats, as studied with the electron microscope. J Biophys Biochem Cytol. 1956;2(6):777–84.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kornguth SE, Anderson JW. Localization of a basic protein in the myelin of various species with the aid of fluorescence and electron microscopy. J Cell Biol. 1965;26(1):157–66.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ousman SS, Kubes P. Immune surveillance in the central nervous system. Nat Neurosci. 2012;15(8):1096–101.CrossRefPubMedGoogle Scholar
  11. 11.
    Lau LW, et al. Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat Rev Neurosci. 2013;14(10):722–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Zimmermann DR, Dours-Zimmermann MT. Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol. 2008;130(4):635–53.CrossRefPubMedGoogle Scholar
  13. 13.
    Louis DN, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vigneswaran K, Neill S, Hadjipanayis CG. Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. Ann Transl Med. 2015;3(7):95.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Stupp R, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.CrossRefPubMedGoogle Scholar
  16. 16.
    Verhaak RG, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cancer, T.i.A.f.R.o. WHO classification of tumours of the central nervous system. In: IARC WHO Classification of Tumours (v.1). 4th ed. Geneva: World Health Organization; 2007.Google Scholar
  18. 18.
    Plate KH, Scholz A, Dumont DJ. Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol. 2012;124(6):763–75.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lebelt A, et al. Angiogenesis in gliomas. Folia Histochem Cytobiol. 2008;46(1):69–72.CrossRefPubMedGoogle Scholar
  20. 20.
    Plate KH, et al. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992;359(6398):845–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Holash J, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284(5422):1994–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Ricci-Vitiani L, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468(7325):824–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Gilbert MR, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chinot OL, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22.CrossRefPubMedGoogle Scholar
  25. 25.
    Lucio-Eterovic AK, Piao Y, de Groot JF. Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin Cancer Res. 2009;15(14):4589–99.CrossRefPubMedGoogle Scholar
  26. 26.
    Okamoto S, et al. Bevacizumab changes vascular structure and modulates the expression of angiogenic factors in recurrent malignant gliomas. Brain Tumor Pathol. 2016;33(2):129–36.CrossRefPubMedGoogle Scholar
  27. 27.
    Brooks WH, et al. Relationship of lymphocyte invasion and survival of brain tumor patients. Ann Neurol. 1978;4(3):219–24.CrossRefPubMedGoogle Scholar
  28. 28.
    Safdari H, Hochberg FH, Richardson EP Jr. Prognostic value of round cell (lymphocyte) infiltration in malignant gliomas. Surg Neurol. 1985;23(3):221–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Mahaley MS Jr, et al. Immunobiology of primary intracranial tumors. Part 1: studies of the cellular and humoral general immune competence of brain-tumor patients. J Neurosurg. 1977;46(4):467–76.CrossRefPubMedGoogle Scholar
  30. 30.
    Long DM. Capillary ultrastructure and the blood-brain barrier in human malignant brain tumors. J Neurosurg. 1970;32(2):127–44.CrossRefPubMedGoogle Scholar
  31. 31.
    Nystrom SH. Electron microscopical structure of the wall of small blood vessels in human multiform glioblastoma. Nature. 1959;184:65.CrossRefPubMedGoogle Scholar
  32. 32.
    Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12(9):623–35.CrossRefPubMedGoogle Scholar
  33. 33.
    Walter BA, et al. Evidence of antibody production in the rat cervical lymph nodes after antigen administration into the cerebrospinal fluid. Arch Histol Cytol. 2006;69(1):37–47.CrossRefPubMedGoogle Scholar
  34. 34.
    Lohr J, et al. Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-beta. Clin Cancer Res. 2011;17(13):4296–308.CrossRefPubMedGoogle Scholar
  35. 35.
    Han S, et al. Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br J Cancer. 2014;110(10):2560–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rolle CE, Sengupta S, Lesniak MS. Mechanisms of immune evasion by gliomas. Adv Exp Med Biol. 2012;746:53–76.CrossRefPubMedGoogle Scholar
  37. 37.
    El Andaloussi A, Lesniak MS. An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro-Oncology. 2006;8(3):234–43.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sayour EJ, et al. Increased proportion of FoxP3+ regulatory T cells in tumor infiltrating lymphocytes is associated with tumor recurrence and reduced survival in patients with glioblastoma. Cancer Immunol Immunother. 2015;64(4):419–27.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Thomas AA, et al. Regulatory T cells are not a strong predictor of survival for patients with glioblastoma. Neuro-Oncology. 2015;17(6):801–9.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rossi ML, et al. Immunohistological study of mononuclear cell infiltrate in malignant gliomas. Acta Neuropathol. 1987;74(3):269–77.CrossRefPubMedGoogle Scholar
  41. 41.
    Yang I, et al. The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci. 2010;17(1):6–10.CrossRefPubMedGoogle Scholar
  42. 42.
    Flugel A, et al. Microglia only weakly present glioma antigen to cytotoxic T cells. Int J Dev Neurosci. 1999;17(5–6):547–56.CrossRefPubMedGoogle Scholar
  43. 43.
    Hishii M, et al. Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery. 1995;37(6):1160–6; discussion 1166–7CrossRefPubMedGoogle Scholar
  44. 44.
    Badie B, et al. Expression of Fas ligand by microglia: possible role in glioma immune evasion. J Neuroimmunol. 2001;120(1–2):19–24.CrossRefPubMedGoogle Scholar
  45. 45.
    Magnus T, et al. Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS. J Neurosci. 2005;25(10):2537–46.CrossRefPubMedGoogle Scholar
  46. 46.
    Gielen PR, et al. Increase in both CD14-positive and CD15-positive myeloid-derived suppressor cell subpopulations in the blood of patients with glioma but predominance of CD15-positive myeloid-derived suppressor cells in glioma tissue. J Neuropathol Exp Neurol. 2015;74(5):390–400.CrossRefPubMedGoogle Scholar
  47. 47.
    Raychaudhuri B, et al. Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro-Oncology. 2011;13(6):591–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Dubinski D, et al. CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro-Oncology. 2016;18(6):807–18.CrossRefPubMedGoogle Scholar
  49. 49.
    Reardon DA, et al. Immunotherapy advances for glioblastoma. Neuro-Oncology. 2014;16(11):1441–58.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Brown CE, et al. Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21(18):4062–72.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Wainwright DA, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res. 2014;20(20):5290–301.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lee J, et al. Non-invasive quantification of brain tumor-induced astrogliosis. BMC Neurosci. 2011;12:9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Le DM, et al. Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade. J Neurosci. 2003;23(10):4034–43.PubMedGoogle Scholar
  55. 55.
    Sierra A, et al. Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells. Lab Investig. 1997;77(4):357–68.PubMedGoogle Scholar
  56. 56.
    Roth P, et al. GDF-15 contributes to proliferation and immune escape of malignant gliomas. Clin Cancer Res. 2010;16(15):3851–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Rath BH, et al. Astrocytes enhance the invasion potential of glioblastoma stem-like cells. PLoS One. 2013;8(1):e54752.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sin WC, et al. Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene. 2016;35(12):1504–16.CrossRefPubMedGoogle Scholar
  59. 59.
    Edwards LA, et al. Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion. J Natl Cancer Inst. 2011;103(15):1162–78.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Huang Y, et al. Oligodendrocyte progenitor cells promote neovascularization in glioma by disrupting the blood-brain barrier. Cancer Res. 2014;74(4):1011–21.CrossRefPubMedGoogle Scholar
  61. 61.
    Yang N, et al. A co-culture model with brain tumor-specific bioluminescence demonstrates astrocyte-induced drug resistance in glioblastoma. J Transl Med. 2014;12:278.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Chen W, et al. Glioma cells escaped from cytotoxicity of temozolomide and vincristine by communicating with human astrocytes. Med Oncol. 2015;32(3):43.CrossRefPubMedGoogle Scholar
  63. 63.
    Zhang L, Zhang Y. Tunneling nanotubes between rat primary astrocytes and C6 glioma cells alter proliferation potential of glioma cells. Neurosci Bull. 2015;31(3):371–8.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yao PS, et al. Glutamate/glutamine metabolism coupling between astrocytes and glioma cells: neuroprotection and inhibition of glioma growth. Biochem Biophys Res Commun. 2014;450(1):295–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Shabtay-Orbach A, et al. Paracrine regulation of glioma cells invasion by astrocytes is mediated by glial-derived neurotrophic factor. Int J Cancer. 2015;137(5):1012–20.CrossRefPubMedGoogle Scholar
  66. 66.
    Gagliano N, et al. Glioma-astrocyte interaction modifies the astrocyte phenotype in a co-culture experimental model. Oncol Rep. 2009;22(6):1349–56.CrossRefPubMedGoogle Scholar
  67. 67.
    Takenaga K, et al. Modified expression of Mts1/S100A4 protein in C6 glioma cells or surrounding astrocytes affects migration of tumor cells in vitro and in vivo. Neurobiol Dis. 2007;25(3):455–63.CrossRefPubMedGoogle Scholar
  68. 68.
    Rath BH, et al. Coculture with astrocytes reduces the radiosensitivity of glioblastoma stem-like cells and identifies additional targets for radiosensitization. Cancer Med. 2015;4(11):1705–16.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Lin Q, et al. Astrocytes protect glioma cells from chemotherapy and upregulate survival genes via gap junctional communication. Mol Med Rep. 2016;13(2):1329–35.CrossRefPubMedGoogle Scholar
  70. 70.
    Zhu Y, et al. Loss of endothelial programmed cell death 10 activates glioblastoma cells and promotes tumor growth. Neuro-Oncology. 2016;18(4):538–48.CrossRefPubMedGoogle Scholar
  71. 71.
    Liu D, et al. Tie2/TEK modulates the interaction of glioma and brain tumor stem cells with endothelial cells and promotes an invasive phenotype. Oncotarget. 2010;1(8):700–9.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Chen F, et al. Up-regulation of microRNA-16 in glioblastoma inhibits the function of endothelial cells and tumor angiogenesis by targeting Bmi-1. Anti Cancer Agents Med Chem. 2016;16(5):609–20.CrossRefGoogle Scholar
  73. 73.
    Jeon HM, et al. Crosstalk between glioma-initiating cells and endothelial cells drives tumor progression. Cancer Res. 2014;74(16):4482–92.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ueda Y, et al. Glioma cells under hypoxic conditions block the brain microvascular endothelial cell death induced by serum starvation. J Neurochem. 2005;95(1):99–110.CrossRefPubMedGoogle Scholar
  75. 75.
    Zhang W, et al. Communication between malignant glioma cells and vascular endothelial cells through gap junctions. J Neurosurg. 2003;98(4):846–53.CrossRefPubMedGoogle Scholar
  76. 76.
    Yan GN, et al. Endothelial cells promote stem-like phenotype of glioma cells through activating the Hedgehog pathway. J Pathol. 2014;234(1):11–22.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Borovski T, et al. Therapy-resistant tumor microvascular endothelial cells contribute to treatment failure in glioblastoma multiforme. Oncogene. 2013;32(12):1539–48.CrossRefPubMedGoogle Scholar
  78. 78.
    Hu F, et al. Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages Toll-like receptor 2 signaling. Neuro-Oncology. 2015;17(2):200–10.CrossRefPubMedGoogle Scholar
  79. 79.
    de Vrij J, et al. Glioblastoma-derived extracellular vesicles modify the phenotype of monocytic cells. Int J Cancer. 2015;137(7):1630–42.CrossRefPubMedGoogle Scholar
  80. 80.
    Synowitz M, et al. A1 adenosine receptors in microglia control glioblastoma-host interaction. Cancer Res. 2006;66(17):8550–7.CrossRefPubMedGoogle Scholar
  81. 81.
    Zhai H, Heppner FL, Tsirka SE. Microglia/macrophages promote glioma progression. Glia. 2011;59(3):472–85.CrossRefPubMedGoogle Scholar
  82. 82.
    Fonseca AC, et al. Microglial stress inducible protein 1 promotes proliferation and migration in human glioblastoma cells. Neuroscience. 2012;200:130–41.CrossRefPubMedGoogle Scholar
  83. 83.
    Shen SC, et al. Reactive oxygen species-dependent nitric oxide production in reciprocal interactions of glioma and microglial cells. J Cell Physiol. 2014;229(12):2015–26.CrossRefPubMedGoogle Scholar
  84. 84.
    Ye XZ, et al. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J Immunol. 2012;189(1):444–53.CrossRefPubMedGoogle Scholar
  85. 85.
    Coniglio SJ, et al. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med. 2012;18:519–27.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Zhang J, et al. A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. Carcinogenesis. 2012;33(2):312–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Yeh WL, et al. A forward loop between glioma and microglia: glioma-derived extracellular matrix-activated microglia secrete IL-18 to enhance the migration of glioma cells. J Cell Physiol. 2012;227(2):558–68.CrossRefPubMedGoogle Scholar
  88. 88.
    Markovic DS, et al. Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol. 2005;64(9):754–62.CrossRefPubMedGoogle Scholar
  89. 89.
    Bettinger I, Thanos S, Paulus W. Microglia promote glioma migration. Acta Neuropathol. 2002;103(4):351–5.CrossRefPubMedGoogle Scholar
  90. 90.
    Miyauchi JT, et al. Ablation of neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression. Oncotarget. 2016;7(9):9801–14.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Nijaguna MB, et al. Glioblastoma-derived macrophage colony-stimulating factor (MCSF) induces microglial release of insulin-like growth factor-binding protein 1 (IGFBP1) to promote angiogenesis. J Biol Chem. 2015;290(38):23401–15.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Brandenburg S, et al. Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta Neuropathol. 2016;131(3):365–78.CrossRefPubMedGoogle Scholar
  93. 93.
    Nijaguna MB, et al. Definition of a serum marker panel for glioblastoma discrimination and identification of Interleukin 1beta in the microglial secretome as a novel mediator of endothelial cell survival induced by C-reactive protein. J Proteome. 2015;128:251–61.CrossRefGoogle Scholar
  94. 94.
    van der Vos KE, et al. Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro-Oncology. 2016;18(1):58–69.CrossRefPubMedGoogle Scholar
  95. 95.
    Wu A, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-Oncology. 2010;12(11):1113–25.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Kasahara T, et al. Interleukin-8 and monocyte chemotactic protein-1 production by a human glioblastoma cell line, T98G in coculture with monocytes: involvement of monocyte-derived interleukin-1alpha. Eur Cytokine Netw. 1998;9(1):47–55.PubMedGoogle Scholar
  97. 97.
    Venkatesh HS, et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell. 2015;161(4):803–16.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Romao LF, et al. Connective tissue growth factor (CTGF/CCN2) is negatively regulated during neuron-glioblastoma interaction. PLoS One. 2013;8(1):e55605.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Clavreul A, et al. Isolation of a new cell population in the glioblastoma microenvironment. J Neuro-Oncol. 2012;106(3):493–504.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Lina Leiss
    • 1
  • Ercan Mutlu
    • 2
  • Mohummad Aminur Rahman
    • 3
  • Per Øyvind Enger
    • 2
    • 4
  1. 1.Neuro ClinicHaukeland University HospitalBergenNorway
  2. 2.Oncomatrix Research Group, Department of BiomedicineUniversity of BergenBergenNorway
  3. 3.Department of BiomedicineUniversity of BergenBergenNorway
  4. 4.Department of NeurosurgeryHaukeland University HospitalBergenNorway

Personalised recommendations