Skip to main content

Models of Tumor Progression in Prostate Cancer

  • Chapter
  • First Online:
Biomarkers of the Tumor Microenvironment

Abstract

Human prostate cancer is initiated in a benign prostate epithelial cell which gains the potential to progress to metastatic disease. The exact cell of origin of prostate cancer has been debated in recent years based upon different models. Primary prostate epithelial cells have restricted life-spans in culture, but can be immortalized. Prostate cancer cell lines have been difficult to establish and new ones are desirable. Attempts to transform benign prostate epithelial cells in vitro have proved difficult without the use of strong carcinogens or oncogenes in processes not likely to mimic closely carcinogenesis in the aging human prostate. Models of epithelial-to-mesenchymal transition (EMT) and cancer stem cells in prostate carcinogenesis have become available, and advances in three-dimensional organoid culture technology represent a breakthrough in prostate cancer research. Organoids may recapitulate multiple features of prostate cancer and have the potential to replace costly and laborious animal experiments. Still, animal models are needed to investigate and validate molecular mechanisms and to develop therapeutic principles in the pipeline between in vitro experiments and clinical applications. Although mice represent the most common experimental animal in prostate cancer research, species like rat, dog, and zebrafish may have advantages depending upon the hypothesis or question. Animal models can generally be categorized into spontaneous or induced development of cancer, immunodeficient animals with xenografts, and genetically engineered animals. In prostate cancer, neuroendocrine differentiation and bone metastases are prevalent in the final stages of cancer progression and animal models that recapitulate these processes are available.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-39147-2_23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rostad K, Mannelqvist M, Halvorsen OJ, Oyan AM, Bo TH, Stordrange L, et al. ERG upregulation and related ETS transcription factors in prostate cancer. Int J Oncol. 2007;30(1):19–32.

    CAS  PubMed  Google Scholar 

  2. Antony L, van der Schoor F, Dalrymple SL, Isaacs JT. Androgen receptor (AR) suppresses normal human prostate epithelial cell proliferation via AR/beta-catenin/TCF-4 complex inhibition of c-MYC transcription. Prostate. 2014;74(11):1118–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee SH, Shen MM. Cell types of origin for prostate cancer. Curr Opin Cell Biol. 2015;37:35–41.

    Article  CAS  PubMed  Google Scholar 

  4. Strand DW, Goldstein AS. The many ways to make a luminal cell and a prostate cancer cell. Endocr Relat Cancer. 2015;22(6):T187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15:701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berman-Booty LD, Knudsen KE. Models of neuroendocrine prostate cancer. Endocr Relat Cancer. 2015;22(1):R33–49.

    Article  CAS  PubMed  Google Scholar 

  7. Terry S, Beltran H. The many faces of neuroendocrine differentiation in prostate cancer progression. Front Oncol. 2014;4:60.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rane JK, Pellacani D, Maitland NJ. Advanced prostate cancer--a case for adjuvant differentiation therapy. Nat Rev Urol. 2012;9(10):595–602.

    Article  CAS  PubMed  Google Scholar 

  9. Rhim JS, Li H, Furusato B. Novel human prostate epithelial cell culture models for the study of carcinogenesis and of normal stem cells and cancer stem cells. Adv Exp Med Biol. 2011;720:71–80.

    Article  CAS  PubMed  Google Scholar 

  10. Sobel RE, Wang Y, Sadar MD. Molecular analysis and characterization of PrEC, commercially available prostate epithelial cells. In Vitro Cell Dev Biol Anim. 2006;42(1-2):33–9.

    Article  CAS  PubMed  Google Scholar 

  11. van Bokhoven A, Varella-Garcia M, Korch C, Johannes WU, Smith EE, Miller HL, et al. Molecular characterization of human prostate carcinoma cell lines. Prostate. 2003;57(3):205–25.

    Article  PubMed  Google Scholar 

  12. Litvinov IV, Vander Griend DJ, Xu Y, Antony L, Dalrymple SL, Isaacs JT. Low-calcium serum-free defined medium selects for growth of normal prostatic epithelial stem cells. Cancer Res. 2006;66(17):8598–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yasunaga Y, Nakamura K, Ewing CM, Isaacs WB, Hukku B, Rhim JS. A novel human cell culture model for the study of familial prostate cancer. Cancer Res. 2001;61(16):5969–73.

    CAS  PubMed  Google Scholar 

  14. Kogan I, Goldfinger N, Milyavsky M, Cohen M, Shats I, Dobler G, et al. hTERT-immortalized prostate epithelial and stromal-derived cells: an authentic in vitro model for differentiation and carcinogenesis. Cancer Res. 2006;66(7):3531–40.

    Article  CAS  PubMed  Google Scholar 

  15. Bello D, Webber MM, Kleinman HK, Wartinger DD, Rhim JS. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis. 1997;18(6):1215–23.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang M, Strand DW, Fernandez S, He Y, Yi Y, Birbach A, et al. Functional remodeling of benign human prostatic tissues in vivo by spontaneously immortalized progenitor and intermediate cells. Stem Cells. 2010;28(2):344–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 2014;159(1):163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Palechor-Ceron N, Suprynowicz FA, Upadhyay G, Dakic A, Minas T, Simic V, et al. Radiation induces diffusible feeder cell factor(s) that cooperate with ROCK inhibitor to conditionally reprogram and immortalize epithelial cells. Am J Pathol. 2013;183(6):1862–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ke XS, Qu Y, Goldfinger N, Rostad K, Hovland R, Akslen LA, et al. Epithelial to mesenchymal transition of a primary prostate cell line with switches of cell adhesion modules but without malignant transformation. PLoS One. 2008;3(10):e3368.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ke XS, Li WC, Hovland R, Qu Y, Liu RH, McCormack E, et al. Reprogramming of cell junction modules during stepwise epithelial to mesenchymal transition and accumulation of malignant features in vitro in a prostate cell model. Exp Cell Res. 2011;317(2):234–47.

    Article  CAS  PubMed  Google Scholar 

  21. Qu Y, Oyan AM, Liu R, Hua Y, Zhang J, Hovland R, et al. Generation of prostate tumor-initiating cells is associated with elevation of reactive oxygen species and IL-6/STAT3 signaling. Cancer Res. 2013;73(23):7090–100.

    Article  CAS  PubMed  Google Scholar 

  22. Ke XS, Qu Y, Cheng Y, Li WC, Rotter V, Oyan AM, et al. Global profiling of histone and DNA methylation reveals epigenetic-based regulation of gene expression during epithelial to mesenchymal transition in prostate cells. BMC Genomics. 2010;11:669.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res. 2007;13(23):7003–11.

    Article  CAS  PubMed  Google Scholar 

  24. Xie D, Gore C, Liu J, Pong RC, Mason R, Hao G, et al. Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proc Natl Acad Sci U S A. 2010;107(6):2485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jadaan DY, Jadaan MM, McCabe JP. Cellular plasticity in prostate cancer bone metastasis. Prostate Cancer. 2015;2015:651580.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nouri M, Ratther E, Stylianou N, Nelson CC, Hollier BG, Williams ED. Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: an opportunity for intervention. Front Oncol. 2014;4:370.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Olsen JR, Azeem W, Hellem MR, Marvyin K, Hua Y, Qu Y, et al. Context dependent regulatory patterns of the androgen receptor and androgen receptor target genes. BMC Cancer. 2016;16:377.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sun Y, Wang BE, Leong KG, Yue P, Li L, Jhunjhunwala S, et al. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res. 2012;72(2):527–36.

    Article  CAS  PubMed  Google Scholar 

  29. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11(12):1487–95.

    Article  CAS  PubMed  Google Scholar 

  30. Sampson N, Neuwirt H, Puhr M, Klocker H, Eder IE. In vitro model systems to study androgen receptor signaling in prostate cancer. Endocr Relat Cancer. 2013;20(2):R49–64.

    Article  CAS  PubMed  Google Scholar 

  31. Sobel RE, Sadar MD. Cell lines used in prostate cancer research: a compendium of old and new lines--part 2. J Urol. 2005;173(2):360–72.

    Article  CAS  PubMed  Google Scholar 

  32. Sobel RE, Sadar MD. Cell lines used in prostate cancer research: a compendium of old and new lines--part 1. J Urol. 2005;173(2):342–59.

    Article  CAS  PubMed  Google Scholar 

  33. Wu X, Gong S, Roy-Burman P, Lee P, Culig Z. Current mouse and cell models in prostate cancer research. Endocr Relat Cancer. 2013;20(4):R155–70.

    Article  CAS  PubMed  Google Scholar 

  34. Lu J, Van der Steen T, Tindall DJ. Are androgen receptor variants a substitute for the full-length receptor? Nat Rev Urol. 2015;12(3):137–44.

    Article  CAS  PubMed  Google Scholar 

  35. Sharma NL, Massie CE, Ramos-Montoya A, Zecchini V, Scott HE, Lamb AD, et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell. 2013;23(1):35–47.

    Article  CAS  PubMed  Google Scholar 

  36. Centenera MM, Raj GV, Knudsen KE, Tilley WD, Butler LM. Ex vivo culture of human prostate tissue and drug development. Nat Rev Urol. 2013;10(8):483–7.

    Article  CAS  PubMed  Google Scholar 

  37. Ellem SJ, De-Juan-Pardo EM, Risbridger GP. In vitro modeling of the prostate cancer microenvironment. Adv Drug Deliv Rev. 2014;79-80:214–21.

    Article  CAS  PubMed  Google Scholar 

  38. Jung P, Sato T, Merlos-Suarez A, Barriga FM, Iglesias M, Rossell D, et al. Isolation and in vitro expansion of human colonic stem cells. Nat Med. 2011;17(10):1225–7.

    Article  CAS  PubMed  Google Scholar 

  39. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5.

    Article  CAS  PubMed  Google Scholar 

  40. Sachs N, Clevers H. Organoid cultures for the analysis of cancer phenotypes. Curr Opin Genet Dev. 2014;24:68–73.

    Article  CAS  PubMed  Google Scholar 

  41. Chua CW, Shibata M, Lei M, Toivanen R, Barlow LJ, Bergren SK, et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat Cell Biol. 2014;16(10):951–61. 1–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014;159(1):176–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(3):230–2.

    Article  CAS  PubMed  Google Scholar 

  44. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521(7550):43–7.

    Article  CAS  PubMed  Google Scholar 

  47. Ittmann M, Huang J, Radaelli E, Martin P, Signoretti S, Sullivan R, et al. Animal models of human prostate cancer: the consensus report of the New York meeting of the mouse models of human cancers consortium prostate pathology committee. Cancer Res. 2013;73(9):2718–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Toivanen R, Taylor RA, Pook DW, Ellem SJ, Risbridger GP. Breaking through a roadblock in prostate cancer research: an update on human model systems. J Steroid Biochem. 2012;131(3–5):122-131.

    Google Scholar 

  49. Zong Y, Goldstein AS, Witte ON. Dissociated prostate regeneration under the renal capsule. Cold Spring Harb Protoc. 2015;2015(11):991.

    PubMed  Google Scholar 

  50. Shultz LD, Goodwin N, Ishikawa F, Hosur V, Lyons BL, Greiner DL. Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb Protoc. 2014;2014(7):694–708.

    PubMed  PubMed Central  Google Scholar 

  51. Cassidy JW, Caldas C, Bruna A. Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res. 2015;75(15):2963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature. 2015;518(7539):422–6.

    Article  CAS  PubMed  Google Scholar 

  53. Choi SY, Lin D, Gout PW, Collins CC, Xu Y, Wang Y. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv Drug Deliv Rev. 2014;79-80:222–37.

    Article  CAS  PubMed  Google Scholar 

  54. Malaney P, Nicosia SV, Dave V. One mouse, one patient paradigm: new avatars of personalized cancer therapy. Cancer Lett. 2014;344(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  55. Grabowska MM, DeGraff DJ, Yu X, Jin RJ, Chen Z, Borowsky AD, et al. Mouse models of prostate cancer: picking the best model for the question. Cancer Metastasis Rev. 2014;33(2-3):377–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Irshad S, Abate-Shen C. Modeling prostate cancer in mice: something old, something new, something premalignant, something metastatic. Cancer Metastasis Rev. 2013;32(1-2):109–22.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jeet V, Russell PJ, Khatri A. Modeling prostate cancer: a perspective on transgenic mouse models. Cancer Metastasis Rev. 2010;29(1):123–42.

    Article  PubMed  Google Scholar 

  58. Parisotto M, Metzger D. Genetically engineered mouse models of prostate cancer. Mol Oncol. 2013;7(2):190–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saxena M, Christofori G. Rebuilding cancer metastasis in the mouse. Mol Oncol. 2013;7(2):283–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van Marion DM, Domanska UM, Timmer-Bosscha H, Walenkamp AM. Studying cancer metastasis: existing models, challenges and future perspectives. Crit Rev Oncol Hematol. 2015;97:107.

    Article  PubMed  Google Scholar 

  61. Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A. 1995;92(8):3439–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hawksworth D, Ravindranath L, Chen Y, Furusato B, Sesterhenn IA, McLeod DG, et al. Overexpression of C-MYC oncogene in prostate cancer predicts biochemical recurrence. Prostate Cancer Prostatic Dis. 2010;13(4):311–5.

    Article  CAS  PubMed  Google Scholar 

  63. Gil J, Kerai P, Lleonart M, Bernard D, Cigudosa JC, Peters G, et al. Immortalization of primary human prostate epithelial cells by c-Myc. Cancer Res. 2005;65(6):2179–85.

    Article  CAS  PubMed  Google Scholar 

  64. Iwata T, Schultz D, Hicks J, Hubbard GK, Mutton LN, Lotan TL, et al. MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. PLoS One. 2010;5(2):e9427.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mimeault M, Batra SK. Animal models relevant to human prostate carcinogenesis underlining the critical implication of prostatic stem/progenitor cells. Biochim Biophys Acta. 2011;1816(1):25–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Barbieri CE, Rubin MA. Molecular characterization of prostate cancer following androgen deprivation: the devil in the details. Eur Urol. 2014;66(1):40–1.

    Article  CAS  PubMed  Google Scholar 

  67. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell. 2015;163(4):1011–25.

    Article  Google Scholar 

  68. Mou HW, Kennedy Z, Anderson DG, Yin H, Xue W. Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Med. 2015;7:53.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Saunders TL. Inducible transgenic mouse models. Methods Mol Biol. 2011;693:103–15.

    Article  CAS  PubMed  Google Scholar 

  70. Friedel RH, Wurst W, Wefers B, Kuhn R. Generating conditional knockout mice. Methods Mol Biol. 2011;693:205–31.

    Article  CAS  PubMed  Google Scholar 

  71. Roebroek AJ, Gordts PL, Reekmans S. Knock-in approaches. Methods Mol Biol. 2011;693:257–75.

    Article  CAS  PubMed  Google Scholar 

  72. Kasper S. Survey of genetically engineered mouse models for prostate cancer: analyzing the molecular basis of prostate cancer development, progression, and metastasis. J Cell Biochem. 2005;94(2):279–97.

    Article  CAS  PubMed  Google Scholar 

  73. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12(20 Pt 2):6243s–9s.

    Article  PubMed  Google Scholar 

  74. Mehra R, Kumar-Sinha C, Shankar S, Lonigro RJ, Jing X, Philips NE, et al. Characterization of bone metastases from rapid autopsies of prostate cancer patients. Clin Cancer Res. 2011;17(12):3924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Simmons JK, Hildreth BE 3rd, Supsavhad W, Elshafae SM, Hassan BB, Dirksen WP, et al. Animal models of bone metastasis. Vet Pathol. 2015;52(5):827–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. LeRoy BE, Thudi NK, Nadella MV, Toribio RE, Tannehill-Gregg SH, van Bokhoven A, et al. New bone formation and osteolysis by a metastatic, highly invasive canine prostate carcinoma xenograft. Prostate. 2006;66(11):1213–22.

    Article  CAS  PubMed  Google Scholar 

  77. Winter SF, Cooper AB, Greenberg NM. Models of metastatic prostate cancer: a transgenic perspective. Prostate Cancer Prostatic Dis. 2003;6(3):204–11.

    Article  CAS  PubMed  Google Scholar 

  78. Yonou H, Yokose T, Kamijo T, Kanomata N, Hasebe T, Nagai K, et al. Establishment of a novel species- and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Res. 2001;61(5):2177–82.

    CAS  PubMed  Google Scholar 

  79. Bruxvoort KJ, Charbonneau HM, Giambernardi TA, Goolsby JC, Qian CN, Zylstra CR, et al. Inactivation of Apc in the mouse prostate causes prostate carcinoma. Cancer Res. 2007;67(6):2490–6.

    Article  CAS  PubMed  Google Scholar 

  80. Poutahidis T, Rao VP, Olipitz W, Taylor CL, Jackson EA, Levkovich T, et al. CD4+ lymphocytes modulate prostate cancer progression in mice. Int J Cancer. 2009;125(4):868–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Valkenburg KC, Hostetter G, Williams BO. Concurrent Hepsin overexpression and adenomatous polyposis coli deletion causes invasive prostate carcinoma in mice. Prostate. 2015;75(14):1579–85.

    Article  CAS  PubMed  Google Scholar 

  82. Pollard M, Suckow MA. Dietary prevention of hormone refractory prostate cancer in Lobund-Wistar rats: a review of studies in a relevant animal model. Comp Med. 2006;56(6):461–7.

    CAS  PubMed  Google Scholar 

  83. Davis BW, Ostrander EA. Domestic dogs and cancer research: a breed-based genomics approach. ILAR J. 2014;55(1):59–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Leroy BE, Northrup N. Prostate cancer in dogs: comparative and clinical aspects. Vet J. 2009;180(2):149–62.

    Article  PubMed  Google Scholar 

  85. Waters DJ, Bostwick DG. The canine prostate is a spontaneous model of intraepithelial neoplasia and prostate cancer progression. Anticancer Res. 1997;17(3A):1467–70.

    CAS  PubMed  Google Scholar 

  86. Rosol TJ, Tannehill-Gregg SH, LeRoy BE, Mandl S, Contag CH. Animal models of bone metastasis. Cancer. 2003;97(3 Suppl):748–57.

    Article  PubMed  Google Scholar 

  87. White RM. Cross-species oncogenomics using zebrafish models of cancer. Curr Opin Genet Dev. 2015;30:73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Teng Y, Xie X, Walker S, White DT, Mumm JS, Cowell JK. Evaluating human cancer cell metastasis in zebrafish. BMC Cancer. 2013;13:453.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bansal N, Davis S, Tereshchenko I, Budak-Alpdogan T, Zhong H, Stein MN, et al. Enrichment of human prostate cancer cells with tumor initiating properties in mouse and zebrafish xenografts by differential adhesion. Prostate. 2014;74(2):187–200.

    Article  CAS  PubMed  Google Scholar 

  90. Shimizu N, Kawakami K, Ishitani T. Visualization and exploration of Tcf/Lef function using a highly responsive Wnt/beta-catenin signaling-reporter transgenic zebrafish. Dev Biol. 2012;370(1):71–85.

    Article  CAS  PubMed  Google Scholar 

  91. Valkenburg KC, Pienta KJ. Drug discovery in prostate cancer mouse models. Expert Opin Drug Discovery. 2015;10(9):1011–24.

    Article  Google Scholar 

  92. Wang Y, Xing J, Xu Y, Zhou N, Peng J, Xiong Z, et al. In silico ADME/T modelling for rational drug design. Q Rev Biophys. 2015;48(4):488–515.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Henning Kalland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Azeem, W. et al. (2017). Models of Tumor Progression in Prostate Cancer. In: Akslen, L., Watnick, R. (eds) Biomarkers of the Tumor Microenvironment. Springer, Cham. https://doi.org/10.1007/978-3-319-39147-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39147-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39145-8

  • Online ISBN: 978-3-319-39147-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics