Advertisement

The Influence of Tissue Architecture on Drug Response: Anticancer Drug Development in High-Dimensional Combinatorial Microenvironment Platforms

Chapter

Abstract

Successfully predicting how anticancer compounds will function clinically, based on preclinical studies, remains a significant challenge. High rates of phase II clinical trial failures indicate that many candidate compounds satisfy minimal safety requirements but lack efficacy in patients. Following the discovery of oncogenes and tumor suppressors, essentially the de facto demonstration that DNA mutations are at the heart of cancers, huge investments have been made in developing technologies to enable exploration of the total complexity of genomes and proteomes that are intrinsic to cells. One important, and wholly unexpected, outcome of those massive investments to understand cancer as a cell-intrinsic problem is the undeniable conclusion that mutations do not explain everything. Indeed, the fact that frankly malignant cells can be phenotypically normal, when held in check by a normal microenvironment, suggests that there is a dominant role of the microenvironment. Tumor microenvironments are known to modulate the malignant phenotype of cells and impact drug responses. Conventional 2-D plastic dishes are the substrate of choice for most drug screening, and rodent and other animals are used as in vivo models, but these modalities lack context in a way that is relevant to predicting drug activity. Alternatively, combinatorial microenvironment microarray platforms provide a high-throughput means of exploring cell-based functional responses in diverse microenvironmental milieus. Data from these techniques are single-cell resolution and encapsulate cell-cell heterogeneity, which provides direct linkages between cellular phenotypes, such as drug responses, and microenvironments. Here, we focus on the applications and analytic approaches used for functional cell-based exploration of combinatorial microenvironments using microarray technology.

Keywords

Microenvironment Cancer MEMA Combinatorial microenvironment microarray Drug development Tissue architecture 

References

  1. 1.
    Light DW, Kantarjian H. Market spiral pricing of cancer drugs. Cancer. 2013;119:3900–2.CrossRefPubMedGoogle Scholar
  2. 2.
    Talmadge JE, Singh RK, Fidler IJ, Raz A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol. 2007;170:793–804.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotech. 2014;32:40–51.CrossRefGoogle Scholar
  4. 4.
    Weigelt B, Lo AT, Park CC, Gray JW, Bissell MJ. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res Treat. 2010;122:35–43.CrossRefPubMedGoogle Scholar
  5. 5.
    Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bissell MJ, Hines WC. Why don’t we get more cancer? a proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17:320–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 2010;18:884–901.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501:346–54.CrossRefPubMedGoogle Scholar
  9. 9.
    Mlecnik B, et al. The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med. 2016;8:327ra26.Google Scholar
  10. 10.
    Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009;9:108–22.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Correia AL, Bissell MJ. The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Updat. 2012;15:39–49.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sneddon JB, Werb Z. Location, location, location: the cancer stem cell niche. Cell Stem Cell. 2007;1:607–11.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yang ZJ, Wechsler-Reya RJ. Hit ‘em where they live: targeting the cancer stem cell niche. Cancer Cell. 2007;11:3–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Flynn CM, Kaufman DS. Donor cell leukemia: insight into cancer stem cells and the stem cell niche. Blood. 2007;109:2688–92.PubMedGoogle Scholar
  15. 15.
    Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. 2004;116:769–78.CrossRefPubMedGoogle Scholar
  16. 16.
    Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441:1075–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Collins CA, et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell. 2005;122:289–301.CrossRefPubMedGoogle Scholar
  18. 18.
    Nishimura EK, et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature. 2002;416:854–60.CrossRefPubMedGoogle Scholar
  19. 19.
    Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM. Self-renewal and expansion of single transplanted muscle stem cells. Nature. 2008;456:502–6.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Booth BW, et al. The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proc Natl Acad Sci U S A. 2008;105:14891–6.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Boulanger CA, Mack DL, Booth BW, Smith GH. Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proc Natl Acad Sci U S A. 2007;104:3871–6.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Flaim CJ, Chien S, Bhatia SN. An extracellular matrix microarray for probing cellular differentiation. Nat Meth. 2005;2:119–25.CrossRefGoogle Scholar
  23. 23.
    LaBarge MA, et al. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integr Biol. 2009;1:70–9.CrossRefGoogle Scholar
  24. 24.
    Soen Y, Mori A, Palmer TD, Brown PO. Exploring the regulation of human neural precursor cell differentiation using arrays of signaling microenvironments. Mol Syst Biol. 2006;2:37.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lin CH, Lee JK, LaBarge MA. Fabrication and use of microenvironment microarrays (MEArrays). J Vis Exp. 2012;68. pii:4152. doi: 10.3791/4152.
  26. 26.
    LaBarge MA, Petersen OW, Bissell MJ. Of microenvironments and mammary stem cells. Stem Cell Rev. 2007;3:137–46.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    LaBarge MA. The difficulty of targeting cancer stem cell niches. Clin Cancer Res. 2010;16:3121–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bissell MJ, LaBarge MA. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell. 2005;7:17–23.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kenny PA, Bissell MJ. Tumor reversion: correction of malignant behavior by microenvironmental cues. Int J Cancer. 2003;107:688–95.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Levental I, Georges PC, Janmey PA. Soft biological materials and their impact on cell function. Soft Matter. 2007;3:299–306.CrossRefGoogle Scholar
  31. 31.
    Paszek MJ, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8:241–54.CrossRefPubMedGoogle Scholar
  32. 32.
    Hansen KC, et al. An in-solution ultrasonication-assisted digestion method for improved extracellular matrix proteome coverage. Mol Cell Proteomics. 2009;8:1648–57.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zanella F, Lorens JB, Link W. High content screening: seeing is believing. Trends Biotechnol. 2010;28:237–45.CrossRefPubMedGoogle Scholar
  34. 34.
    Ranga A, et al. 3D niche microarrays for systems-level analyses of cell fate. Nat Commun. 2014;5:4324.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pelissier FA, et al. Age-related dysfunction in mechanotransduction impairs differentiation of human mammary epithelial progenitors. Cell Rep. 2014;7:1926–39.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lin CH, et al. Microenvironment rigidity modulates responses to the HER2 receptor tyrosine kinase inhibitor lapatinib via YAP and TAZ transcription factors. Mol Biol Cell. 2015;26:3946–53.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shin I, Park S, Lee M-r. Carbohydrate microarrays: an advanced Technology for Functional Studies of Glycans. Chem Eur J. 2005;11:2894–901.CrossRefPubMedGoogle Scholar
  38. 38.
    Brafman DA, et al. Investigating the role of the extracellular environment in modulating hepatic stellate cell biology with arrayed combinatorial microenvironments. Integr Biol. 2009;1:513–24.CrossRefGoogle Scholar
  39. 39.
    Ankam S, Teo BK, Kukumberg M, Yim EK. High throughput screening to investigate the interaction of stem cells with their extracellular microenvironment. Organogenesis. 2013;9:128–42.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kuschel C, et al. Cell adhesion profiling using extracellular matrix protein microarrays. BioTechniques. 2006;40:523–31.CrossRefPubMedGoogle Scholar
  41. 41.
    Konagaya S, Kato K, Nakaji-Hirabayashi T, Arima Y, Iwata H. Array-based functional screening of growth factors toward optimizing neural stem cell microenvironments. Biomaterials. 2011;32:5015–22.CrossRefPubMedGoogle Scholar
  42. 42.
    Angenendt P. Progress in protein and antibody microarray technology. Drug Discov Today. 2005;10:503–11.CrossRefPubMedGoogle Scholar
  43. 43.
    Kim H, et al. Patterning methods for polymers in cell and tissue engineering. Ann Biomed Eng. 2012;40:1339–55.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yang YH, et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002;30:e15.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Brafman DA, Chien S, Willert K. Arrayed cellular microenvironments for identifying culture and differentiation conditions for stem, primary and rare cell populations. Nat Protoc. 2012;7:703–17.CrossRefPubMedGoogle Scholar
  46. 46.
    Guyon L, et al. Φ-score: a cell-to-cell phenotypic scoring method for sensitive and selective hit discovery in cell-based assays. Sci Rep. 2015;5:14221.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hilsenbeck SG, et al. Statistical analysis of Array expression data as applied to the problem of Tamoxifen resistance. J Natl Cancer Inst. 1999;91:453–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Scholz M, Gatzek S, Sterling A, Fiehn O, Selbig J. Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics. 2004;20:2447–54.CrossRefPubMedGoogle Scholar
  49. 49.
    Yao F, Coquery J, Le Cao K-A. Independent principal component analysis for biologically meaningful dimension reduction of large biological data sets. BMC Bioinformatics. 2012;13:24.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Qiu P, et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol. 2011;29:886–91.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Amir E-AD, et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotech. 2013;31:545–52.CrossRefGoogle Scholar
  52. 52.
    Steinbach M, Ertöz L, Kumar V. In: Wille L, editor. New directions in statistical physics. Berlin, Heidelberg: Springer; 2004. p. 273–309.CrossRefGoogle Scholar
  53. 53.
    Bellman R. Adaptive control processes: a guided tour. Princeton, NJ: Princeton University Press; 1961.CrossRefGoogle Scholar
  54. 54.
    Haykin S, Chen Z. The cocktail party problem. Neural Comput. 2005;17:1875–902.CrossRefPubMedGoogle Scholar
  55. 55.
    Laurens van der Maaten GH. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–605.Google Scholar
  56. 56.
    Bendall SC, et al. Single-cell mass Cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332:687–96.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Department of Population SciencesBeckman Research Institute of City of HopeDuarteUSA
  3. 3.Centre for Cancer Biomarkers CCBIOUniversity of BergenBergenNorway

Personalised recommendations